Synthesis and characterization of SnO2-TiO2 nanocomposite with rutile-phase via hydrothermal method at low temperature

Yuan-rui Wang , Wen-yan Li , Bing Zhou , Xu Zhao

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 617 -620.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 617 -620. DOI: 10.1007/s40242-013-3067-x
Article

Synthesis and characterization of SnO2-TiO2 nanocomposite with rutile-phase via hydrothermal method at low temperature

Author information +
History +
PDF

Abstract

With Ti(SO4)2, SnCl4·5H2O and urea as raw materials, SnO2-TiO2 nanocomposites were synthesized via low temperature hydrothermal method at 80–100 °C in aqueous solutions. The morphologies of the products were altered systematically by varying the Ti/Sn molar ratio of the reactants, and rutile-phase particles were obtained with an average diameter of about 52.2 nm at a molar ratio of Ti/Sn=7.5. The surface composition of the composite was revealed by X-ray photoelectron spectroscopy(XPS) and X-ray diffraction(XRD) to be solely TiO2 with a rutile structure. This new composite material exhibits a high ultraviolet absorption capacity, and its photocatalytic activity for phenol oxidation is much lower than that of the commercial titania nanoparticles(P25).

Keywords

Rutile / Titanium dioxide / Stannum dioxide / Core-shell / UV-shielding

Cite this article

Download citation ▾
Yuan-rui Wang, Wen-yan Li, Bing Zhou, Xu Zhao. Synthesis and characterization of SnO2-TiO2 nanocomposite with rutile-phase via hydrothermal method at low temperature. Chemical Research in Chinese Universities, 2013, 29(4): 617-620 DOI:10.1007/s40242-013-3067-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Subasri R, Shinohara T. Electrochem. Commun., 2003, 89: 897.

[2]

Diebold U. Surf. Sci. Rep., 2003, 48: 53.

[3]

Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem. Rev., 1995, 95: 69.

[4]

Zhang W S, Zhu Z W, Cheng C Y. Hydrometallurgy, 2011, 108: 177.

[5]

Peter L M, Ponomarev E A, Frsnco G, Shaw N. J. Electrochim. Acta, 1999, 45: 549.

[6]

Park N G, Lagemant J V, Frank A J. J. Phys. Chem. B, 2000, 104: 8989.

[7]

Croce F, Appetecchi G B, Persi L, Scrosati B. Nature, 1998, 394: 456.

[8]

Bai N, Li S G, Chen H Y, Pang W Q. J. Mater. Chem., 2001, 11: 3099.

[9]

Li Y Z, Lee N H, Hwang D S, Song J S, Lee E G, Kim S J. Langmuir, 2004, 20: 10838.

[10]

Newman M D, Stotland M, Ellis J I. J. Am. Acad. Dermatol, 2009, 61: 685.

[11]

Shklover V, Nazeeruddin M K, Zakeeruddin S M, Barbe C, Kay A, Haibach T, Steurer W, Hermann R, Nissen H U, Gratel M. Chem. Mater., 1997, 9: 430.

[12]

Dransfield G P. Radiat., Prot. Dosim., 2000, 91: 271.

[13]

Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.

[14]

Kumar P M, Badrinarayanan S, Sastry M. Thin Solid Films, 2000, 358: 122.

[15]

Alonso E, Montequi I, Lucas S, Cocero M J. J. Supercrit. Fluid., 2007, 39: 453.

[16]

Yang S F, Liu Y H, Guo Y P, Zhao J Z, Xu H F, Wang Z C. Mater. Chem. Phys., 2003, 77: 501.

[17]

Cheng H M, Ma J M, Zhao Z G, Qi L M. Chem. Mater., 1995, 7: 663.

[18]

Pal B, Sharon M, Nogami G. Mater. Chem. Phys., 1999, 119: 163.

[19]

Wang Y R, Zhou B, Wang Z C, Zhao X. Chem. J. Chinese Universities, 2012, 33(10): 2146.

[20]

Pan J, Hühne S M, Shen H, Xiao L S, Born P, Mader W, Mathur S. J. Phys. Chem. C, 2011, 115: 17265.

[21]

Chappel S, Chen S G, Zaban A. Langmuir, 2002, 18: 3336.

[22]

Vinodgopal K, Bedja I, Kamat P V. Chem. Mater., 1996, 8: 2180.

[23]

Bedja I, Kamat P V. J. Phys. Chem., 1995, 99: 9182.

[24]

Vinodgopal K, Kamat P V. Environ. Sci. Technol., 1995, 29: 841.

[25]

Li R X, Yabe S, Yamashita M, Momose S, Yoshida S, Yin S, Sato T. Solid State Ionics, 2002, 151: 235.

[26]

Ghodsi F E, Tepehan F Z, Tepehan G G. Electrochim. Acta, 1999, 44: 3127.

[27]

Masui T, Yamamoto M, Sakata T, Mori H, Adachi G Y. J. Mater. Chem., 2000, 10: 353.

[28]

Yabe S, Yamashita M, Momose S, Tahira K. Int. J. Inorganic Mater., 2001, 3: 1003.

[29]

Li R X, Yabe S, Yamashita M, Momose S, Yoshida S, Yin S, Sato T. Mater. Chem. Phys., 2002, 75: 39.

[30]

Lautenschlager S, Wulf H C, Pittelkow M R. Lancet, 2007, 370: 528.

[31]

Kullavanijaya P, Lim H W. J. Am. Acad. Dermatol, 2005, 52: 937.

[32]

Wang X Y, Jiang Y S, Zhu H, Zhang J C. Chem. Res. Chinese Universities, 2011, 27(3): 486.

[33]

Wang Y Q, Chen S G, Tang X H, Palchik O, Zaban A, Koltypin Y, Gedanken A. J. Mater. Chem., 2001, 11: 521.

[34]

Sclafani A, Palmisano L, Schiavello M. J. Phys. Chem., 1990, 94: 829.

[35]

Hagfeldt A, Gratzel M. Chem. Rev., 1995, 95: 49.

[36]

Okamoto K, Yamamoto Y, Tanaka H, Tanaka M, Itaya A. Bull. Chem. Soc. Jpn., 1985, 58: 2015.

[37]

Bickley R I, Carreno T G, Lees J S, Palmisano L, Tilley R J D. J. Solid State Chem., 1991, 92: 178.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/