Volume-related efficiency of gadolinium polyoxometalates as MRI contrast agents

Da-liang Kong , Bo Wei , Sheng-yan Zhou , Hai-shan Yang , Yang Jiang

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1055 -1058.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (6) : 1055 -1058. DOI: 10.1007/s40242-013-3061-3
Article

Volume-related efficiency of gadolinium polyoxometalates as MRI contrast agents

Author information +
History +
PDF

Abstract

Two gadolinium polyoxometalates, KCs4[Gd(α-SiW11O39)]·25H2O(POM-1) and K13[Gd(β 2-SiW11O39)2]· 27H2O(POM-2), have been evaluated as the candidates of potential magnetic resonance imaging T 1(longitudinal relaxation) contrast agents. Longitudinal relaxivities of POM-2 are much higher than those of POM-1 in pure water and protein solution, respectively. However, compared with POM-1, POM-2 interacts with protein more strongly through electrostatic interaction, which is comfirmed by the fluoresence quenching of human serum albumin(HSA) in solutions with different polyoxometalate concentrations. Meanwhile, POM-1 presentes much lower cytotoxicity in the cell viability tests.

Keywords

Magnetic resonance imaging(MRI) / Contrast agent / Polyoxometalate

Cite this article

Download citation ▾
Da-liang Kong, Bo Wei, Sheng-yan Zhou, Hai-shan Yang, Yang Jiang. Volume-related efficiency of gadolinium polyoxometalates as MRI contrast agents. Chemical Research in Chinese Universities, 2013, 29(6): 1055-1058 DOI:10.1007/s40242-013-3061-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Terreno E, Castelli D D, Viale A, Aime S. Chem. Rev., 2010, 110: 3019.

[2]

Prasad P V. Magnetic Resonance Imaging: Methods and Biologic Applications, 2006, New Jersey: Humana Press.

[3]

Aime S, Botta M, Fasano M, Terreno E. Chem. Soc. Rev., 1998, 27: 19.

[4]

Aime S, Botta M, Fasano M, Terreno E. Acc. Chem. Res., 1999, 32: 941.

[5]

Caravan P. Chem. Soc. Rev., 2006, 35: 512.

[6]

Bottrill M, Kwok L, Long N J. Chem. Soc. Rev., 2006, 35: 557.

[7]

Villaraza A J L, Bumb A, Brechbiel M W. Chem. Rev., 2010, 110: 2921.

[8]

Werner E J, Datta A, Jocher C J, Raymond K N. Angew. Chem. Int. Ed., 2008, 47: 8568.

[9]

Viswanathan S, Kovacs Z, Green K N, Ratnakar S J, Sherry A D. Chem. Rev., 2010, 110: 2960.

[10]

Terreno E, Castelli D D, Viale A, Aime S. Chem. Rev., 2010, 110: 3019.

[11]

Bolskar R D, Benedetto A F, Husebo L O, Price R E, Jackson E F, Wallace S, Wilson L J, Alford J M. J. Am. Chem. Soc., 2003, 125: 5471.

[12]

Rocca J D, Lin W. Eur. J. Inorg. Chem., 2010, 2010: 3725.

[13]

Bridot J, Faure A, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll J, Elst L V, Muller R, Roux S, Perriat P, Tillement O. J. Am. Chem. Soc., 2007, 129: 5073.

[14]

Hill C. L., Chem. Rev., 1998, 98(Special issue for polyoxometalate)

[15]

Yamase T. J. Mater. Chem., 2005, 15: 4773.

[16]

Hasenknopf B. Frontiers in Bioscience, 2005, 10: 275.

[17]

Wong E L, Sun R W, Chung N P, Lin C S, Zhu N, Che C. J. Am. Chem. Soc., 2006, 128: 4938.

[18]

Feng J, Li X, Pei F, Sun G, Zhang X, Liu M. Magn. Reson. Imaging, 2002, 20: 407.

[19]

Li Z, Li W, Li X, Pei F, Li Y, Lei H. Magn. Reson. Imaging, 2007, 25: 412.

[20]

Bassil B S, Dickman M H, von der Kammer B, Kortz U. Inorg. Chem., 2007, 46: 2452.

[21]

Mialane P, Lisnard L, Mallard A, Marrot J, Antic-Fidancev E, Aschehoug P, Vivien D, Sécheresse F. Inorg. Chem., 2003, 42: 2102.

[22]

Zheng L, Ma Y, Zhang G, Yao J, Bassil B S, Kortz U, Keita B, de Oliveira P, Nadjo L, Craescu C T, Miron S. Eur. J. Inorg. Chem., 2009, 2009: 5189.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/