Effects of micelle on pyrazoles as antioxidants in radical-induced oxidation of DNA

Yan-feng Li , Zai-qun Liu

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 671 -677.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 671 -677. DOI: 10.1007/s40242-013-3059-x
Article

Effects of micelle on pyrazoles as antioxidants in radical-induced oxidation of DNA

Author information +
History +
PDF

Abstract

Effects of 4-(1,3-diphenyl-1H-pyrazol-5-yl)phenol(APP), 4-(1,5-diphenyl-1H-pyrazol-3-yl)phenol(BPP) and 4-(3,5-diphenyl-1H-pyrazol-1-yl)phenol(CPP) on 2,2′-azobis-(2-amidinopropane hydrochloride)(AAPH)-induced oxidation of DNA were measured in the presence of various concentrations of Triton X-100, cetyltrimethylammonium bromide(CTAB), or sodium dodecyl sulfate(SDS) in order to clarify the influence of neutral, cationic and anionic microenvironments on antioxidant capacities of APP, BPP and CPP. Although these surfactants can protect DNA against AAPH-induced oxidation, the pyrazoles in the presence of these surfactants functioned as prooxidants when the concentrations of Triton X-100 and CTAB increased. However, CPP exhibited antioxidant property with the increase of the concentration of CTAB. On the contrary, APP, BPP and CPP were antioxidants in the presence of various concentrations of SDS. The added surfactants resulted in the complication of the microenvironments around DNA, pyrazoles and peroxyl radical(ROO·) derived from AAPH. The anionic charge of SDS was beneficial to enhancing the antioxidant effectiveness of these pyrazoles. It can be concluded that the charge property of surfactants markedly influenced the behavior of an antioxidant in AAPH-induced oxidation of DNA.

Keywords

Pyrazole / Surfactant / Oxidation / DNA / Free radical / Microenvironment effect

Cite this article

Download citation ▾
Yan-feng Li, Zai-qun Liu. Effects of micelle on pyrazoles as antioxidants in radical-induced oxidation of DNA. Chemical Research in Chinese Universities, 2013, 29(4): 671-677 DOI:10.1007/s40242-013-3059-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

van Horssen J, Witte M E, Schreibelt G, de Vries H E. Biochim. Biophys. Acta, 2011, 1812: 141.

[2]

de Cavanagh E M V, Inserra F, Ferder L. Cardiovasc. Res., 2011, 89: 31.

[3]

Benigni R, Bossa C. Chem. Rev., 2011, 111: 2507.

[4]

Kong Q, Lin C G. Cell. Mol. Life Sci., 2010, 67: 1817.

[5]

Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes C J, Valko M. J. Appl. Toxicol., 2011, 31: 95.

[6]

Hosseinimehr S J. Drug Discovery Today, 2010, 15: 907.

[7]

Astruc D, Boisselier E, Ornelas C. Chem. Rev., 2010, 110: 1857.

[8]

Lee C Y, Sharma A, Cheong J E, Nelson J L. Bioorg. Med. Chem. Lett., 2009, 19: 6326.

[9]

Lee C Y, Sharma A, Uzarski R L, Cheong J E, Xu H, Held R A, Upadhaya S K, Nelson J L. Free Radical Biol. Med., 2011, 50: 918.

[10]

Bandgar B P, Gawande S S, Bodade R G, Gawande N M, Khobragade C N. Bioorg. Med. Chem., 2009, 17: 8168.

[11]

Riyadh S M, Farghaly T A, Abdallah M A, Abdalla M M, Abd El-Aziz M R. Eur. J. Med. Chem., 2010, 45: 1042.

[12]

Dedon P C. Chem. Res. Toxicol., 2008, 21: 206.

[13]

Shao J, Geacintov N E, Shafirovich V. Chem. Res. Toxicol., 2010, 23: 933.

[14]

Møller P, Loft S. Environ. Health Perspect., 2010, 118: 1126.

[15]

Zhou B, Miao Q, Yang L, Liu Z L. Chem. Eur. J., 2005, 11: 680.

[16]

Shang Y J, Jin X L, Shang X L, Tang J J, Liu G Y, Dai F, Qian Y P, Fan G J L Q Z B. Food Chem., 2010, 119: 1435.

[17]

Rudiuk S, Franceschi-Messant S, Chouini-Lalanne N, Perez E, Rico-Lattes I. Langmuir, 2008, 24: 8452.

[18]

Zhang P, Omaye S T. Food Chem. Toxicol., 2001, 39: 239.

[19]

Shao J, Geacintov N E, Shafirovich V. J. Phys. Chem. B, 2010, 114: 6685.

[20]

Shang H, Chang W S, Kan S, Majetich S A, Lee G U. Langmuir, 2006, 22: 2516.

[21]

Li Y F, Liu Z Q. Free Radical Biol. Med., 2012, 52: 103.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/