Influence of NaCl on cathode performance of solid oxide fuel cells

Run-ru Liu , De-jun Wang , Jing Leng

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 747 -750.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 747 -750. DOI: 10.1007/s40242-013-3052-4
Article

Influence of NaCl on cathode performance of solid oxide fuel cells

Author information +
History +
PDF

Abstract

Degradation induced by sodium chloride in air was investigated for (La0.8Sr0.2)0.98MnO3(LSM) and La0.6Sr0.4Co0.2Fe0.8O3(LSCF) cathodes in solid oxide fuel cells(SOFC). Cell performance was measured by volatilizing NaCl to be supplied to the cathode at a constant current density of 200 mA/cm2 for up to 100 h. At 800 °C, an exposure of the cathode to 30 mg/L NaCl caused negligible degradation of LSM at least for 100 h. Slight change in the composition of the cathode materials was observed which may imply the gradual degradation of cell performance for the long-term. In addition, cell performance degradation was compared between 700 °C and 900 °C, being poisoned by 30 mg/L NaCl. Degradation was negligible for LSM cathode, while LSCF cathode showed slightly poor tolerance at 700 °C due to the decomposition of the cathode material. Further studies should be done to clarify the long-term influence of NaCl on cathode performance.

Keywords

NaCl / Degradation / Cathode / Solid oxide fuel cell(SOFC)

Cite this article

Download citation ▾
Run-ru Liu, De-jun Wang, Jing Leng. Influence of NaCl on cathode performance of solid oxide fuel cells. Chemical Research in Chinese Universities, 2013, 29(4): 747-750 DOI:10.1007/s40242-013-3052-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Minh N Q, Takahashi T. Science and Technology of Ceramic Fuel Cells, 1995, Amsterdam: Elsevier.

[2]

Yokokawa H, Sakai N, Vielstich W, Lamm H. Handbook of Fuel Cell Fundamental Technology and Application, 2003, New York: John Wiley & Sons 219.

[3]

Singhal S C. Solid Oxide Fuel Cells VI, 1999, Pennington: The Electrochemical Society 39.

[4]

Yokokawa H, Watanabe T, Ueno A, Hoshino K. ECS Trans., 2007, 7(1): 133.

[5]

Sasaki K, Adachi S, Haga K, Uchikawa M, Yamamoto J, Iyoshi A, Chou J T, Shiratori Y, Ito K. ECS Trans., 2007, 7(1): 1675.

[6]

Badwal S P S, Deller R, Foger K, Ramprakash Y, Zhang J P. Solid State Ionics, 1997, 99: 297.

[7]

Taniguchi S, Kadowaki M, Kawamura H, Akiyama T, Miyake Y, Saitoh T. J. Power Sources, 1995, 55: 73.

[8]

Liu R R, Kim S H, Shiratori Y, Oshima T, Ito K, Sasaki K. ECS Trans., 2009, 25(2): 2859.

[9]

Kim S H, Shim K B, Kim C S, Chou J T, Oshima T, Shiratori Y, Ito K, Sasaki K. J. Fuel Cell Sci. Technology, 2010, 7(2): 21011.

[10]

Liu R R, Kim S H, Taniguchi S, Oshima T, Shiratori Y, Ito K, Sasaki K. J. Power Sources, 2011, 196: 7090.

[11]

Mikkola M S, Rockward T, Uribe F A, Pivovar B S. Fuel Cells, 2007, 7(2): 153.

[12]

Xiong Y, Yamaji K, Horita T, Yokokawa H, Akikusa J, Eto H, Inagaki T. J. Electrochem. Soc., 2009, 156(5): B588.

[13]

Wang D J, Leng J. Chem. Res. Chinese Universities, 2012, 28(5): 866.

[14]

Wang X Y, Jiang Y S, Zhu H, Zhang J C. Chem. Res. Chinese Universities, 2011, 27(3): 486.

[15]

Fu J, Qiao J L, Ma J X. Chem. J. Chinese Universities, 2011, 32(7): 1598.

[16]

Yokokawa H, Horita T. Handbook of Fuel Cells Fundamentals Technology and Application, Vols. 5 and 6, 2009, New York: Wiley-Blackwell.

[17]

Zhong W, Chen W, Ding W, Zhang N, Du Y, Yan Q. Solid State Communications, 1998, 106(1): 55.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/