SERS study of Co-doped TiO2 nanoparticles

Xiang-xin Xue , Wei Ji , Zhu Mao , Zhi-shi Li , Zhi-nan Guo , Bing Zhao , Chun Zhao

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 751 -754.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 751 -754. DOI: 10.1007/s40242-013-3051-5
Article

SERS study of Co-doped TiO2 nanoparticles

Author information +
History +
PDF

Abstract

Single-phase Co-doped TiO2(Co xTi1−xO2) nanoparticles(NPs) synthesized via a simple sol-hydrothermal method were used as surface-enhanced Raman scattering(SERS) substrates. Interestingly, it was found that SERS signals were enhanced greatly compared to those of pure TiO2 nanoparticles when an amount of Co2+ ions were doped into the TiO2 lattice. Detailed results clearly show that Co element as Co2+ was incorporated into the TiO2 lattice and the defects were created due to the substitution of Co2+ ions for the Ti4+ ions. The Co2+ doping increases the defect concentration of Co xTi1−xO2 NPs. An amount of defects is beneficial to the charge-transfer so as to increase the SERS activities. A possible mechanism of charge-transfer from Co xTi1−xO2 NPs to molecules was then briefly discussed.

Keywords

TiO2 / Dope / Defect / Surface-enhanced Raman scattering / Charge-transfer

Cite this article

Download citation ▾
Xiang-xin Xue, Wei Ji, Zhu Mao, Zhi-shi Li, Zhi-nan Guo, Bing Zhao, Chun Zhao. SERS study of Co-doped TiO2 nanoparticles. Chemical Research in Chinese Universities, 2013, 29(4): 751-754 DOI:10.1007/s40242-013-3051-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lombardi J R, Birke R L. Acc. Chem. Res., 2009, 42: 734.

[2]

Ren B, Lin X F, Yang Z L, Liu G K, Aroca R F, Mao B W, Tian Z Q. J. Am. Chem. Soc., 2003, 125: 9598.

[3]

Qian X M, Li J, Nie S M. J. Am. Chem. Soc., 2009, 131: 7540.

[4]

Maitani M M, Ohlberg D A A, Li Z Y, Allara D L, Stewart D R, Williams R S. J. Am. Chem. Soc., 2009, 131: 6310.

[5]

Leng W N, Kelley A M. J. Am. Chem. Soc., 2006, 128: 3492.

[6]

Yu X X, Cai H B, Zhang W H, Li X J, Pan N, Luo Y, Wang X P, Hou J G. ACS Nano, 2011, 5: 952.

[7]

Chen L, Han X X, Yang J X, Zhou J, Z C, Song W, Zhao B, Xu W Q, Ozaki Y. Chem. Res. Chinese Unversities, 2011, 27(4): 683.

[8]

Fleischmann M H P, McQuillan A J. Chem. Phys. Lett., 1974, 26: 163.

[9]

Tian Z Q, Ren B, Wu D Y. J. Phys. Chem. B, 2002, 106: 9463.

[10]

Sun Z H, Zhao B, Lombardi J R. Appl. Phys. Lett., 2007, 91: 221106.

[11]

Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R. J. Phys. Chem. C, 2008, 112: 20095.

[12]

Wang Y, Sun Z, Hu H, Jing S, Zhao B, Xu W, Zhao C, Lombardi J R. J. Raman Spectrosc., 2007, 38: 34.

[13]

Wang Y, Zhang J, Jia H, Li M, Zeng J, Yang B, Zhao B, Xu W, Lombardi J R. J. Phys. Chem. C, 2008, 112: 996.

[14]

Wang Y, Hu H, Jing S, Wang Y, Sun Z, Zhao B, Zhao C, Lombardi J R. Anal. Sci., 2007, 23: 787.

[15]

Hou J L, Jia X F, Xue X X, Chen L, Song W, Xu W Q, Zhao B. Chem. Res. Chinese Unversities, 2012, 33(1): 139.

[16]

Zhang W F, He Y L, Zhang M S, Yin Z, Chen Q. J. Phy. D Appl. Phys., 2000, 33: 912.

[17]

Das K, Sharma S N, Kumar M, De S K. J. Phys. Chem. C, 2009, 113: 14783.

[18]

Choi W K, Ong T Y, Tan L S, Loh F C, Tan K L. J. Appl. Phys., 1998, 83: 4968.

[19]

Leon C P, Kador L, Peng B, Thelakkat M. J. Phys. Chem. B, 2006, 110: 8723.

[20]

Rosendahl S M, Burgess I J. Electrochim. Acta, 2008, 53: 6759.

[21]

Moskovits M. J. Raman Spectrosc., 2005, 36: 485.

[22]

Larsen A G, Holm A H, Roberson M, Daasbjerg K. J. Am. Chem. Soc., 2001, 123: 1723.

[23]

Yamagishi M, Kuriki S, Song P K, Shigesato Y. Thin Solid Films, 2003, 442: 227.

[24]

Zou W Q, Mo Z R, Lu Z L, Lu Z H, Zhang F M, Du Y W. Physica B, 2008, 403: 3686.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/