TD-DFT accuracy in determining excited-state structures and fluorescence spectra of firefly emitter

Chun-gang Min , Yan Leng , Xi-kun Yang , Ai-min Ren , Xiao-ying Cui , Ming-li Xu , Shao-hua Wang

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 982 -985.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 982 -985. DOI: 10.1007/s40242-013-3050-6
Article

TD-DFT accuracy in determining excited-state structures and fluorescence spectra of firefly emitter

Author information +
History +
PDF

Abstract

We analyzed the excited-state structures and emission spectra of firefly emitter, the anionic keto form of firefly oxyluciferin(keto-1), determined by the time dependent-density functional theory(TD-DFT) approach. The analysis is based on a direct comparison with the highly correlated CASSCF(MS-CASPT2) ab initio approach. 49 DFT functionals were considered and applied to the study. Among the tested functionals, mPW3PBE, B3PW91 and B3P86 give the best performance for ground-state geometry, absorption spectrum, excite-state geometry and emission spectrum.

Keywords

Firefly / Time dependent-density functional theory(TD-DFT) / Benchmarking / Keto-1 / Excited state / Emission spectrum

Cite this article

Download citation ▾
Chun-gang Min, Yan Leng, Xi-kun Yang, Ai-min Ren, Xiao-ying Cui, Ming-li Xu, Shao-hua Wang. TD-DFT accuracy in determining excited-state structures and fluorescence spectra of firefly emitter. Chemical Research in Chinese Universities, 2013, 29(5): 982-985 DOI:10.1007/s40242-013-3050-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fraga H. Photochem. Photobiol. Sci., 2008, 7: 146.

[2]

Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M. Trends Biotechnol., 2004, 22: 295.

[3]

Branchini B R, Murtiashaw M H, Magyar R A, Portier N C, Ruggiero M C, Stroh J G. J. Am. Chem. Soc., 2002, 124: 2112.

[4]

Branchini B R, Southworth T L, Murtiashaw M H, Magyar R A, Gonzalez S A, Ruggiero M C, Stroh J G. Biochemistry, 2004, 43: 7255.

[5]

Wood K V. Photochem. Photobiol., 1995, 62: 662.

[6]

Hastings J W. Gene, 1996, 173: 5.

[7]

Liu Y J, de Vico L, Lindh R. J. Photochem. Photobiol. A, 2008, 194: 261.

[8]

Navizet I, Liu Y J, Ferré N, Xiao H Y, Fang W H, Lindh R. J. Am. Chem. Soc., 2010, 132: 706.

[9]

Yang T, Goddard J D. J. Phys. Chem. A, 2007, 111: 4489.

[10]

Nakatani N, Hasegawa J Y, Nakatsuji H. Chem. Phys. Lett., 2009, 469: 191.

[11]

Nakatani N, Hasegawa J Y, Nakatsuji H. J. Am. Chem. Soc., 2007, 129: 8756.

[12]

Li Z W, Min C G, Ren A M, Guo J F, Goddard J D, Feng J K, Zuo L. Bull. Korean Chem. Soc., 2010, 31: 895.

[13]

Li Z W, Ren A M, Guo J F, Yang T, Goddard J D, Feng J K. J. Phys. Chem. A, 2008, 112: 9796.

[14]

da Silva L P, Esteves da Silva J C G. J. Comput. Chem., 2011, 32: 2654.

[15]

Min C G, Ren A M, Guo J F, Zou L Y, Goddard J D, Sun C C. ChemPhysChem, 2010, 11: 2199.

[16]

Jin J, Xu L, Guo S J, Sun S Y, Zhang S, Zhu C L, Kong W, Jiang C L. Chem. Res. Chinese Universities, 2012, 28(1): 91.

[17]

Li Z S, Zou L Y, Ren A M, Feng J K. Chem. J. Chinese Universities, 2012, 33(12): 2757.

[18]

Sun Y, Ren A M, Li Z S, Min C G, Ren X F, Feng J K. Chem. J. Chinese Universities, 2011, 32(11): 2586.

[19]

Serrano-Andrés L, Merchàn M. J. Mol. Struct.(Theochem.), 2005, 729: 99.

[20]

Wada N, Sakai H. J. Biol. Phys., 2005, 31: 403.

[21]

Sundholm D. Chem. Phys. Lett., 1999, 302: 480.

[22]

Furche F, Ahlrichs R, Wachsmann C, Weber E, Sobanski A, Vogtle F, Grimme S. J. Am. Chem. Soc., 2000, 122: 1717.

[23]

Dreuw A, Dunietz B D, Head-Gordon M. J. Am. Chem. Soc., 2002, 124: 12070.

[24]

Dreuw A, Fleming G R, Head-Gordon M. J. Phys. Chem. B, 2003, 107: 6500.

[25]

Frisch M J, Trucks G W, Schlegel H B Gaussian 09, Revision A.02, 2009, Wallingford CT: Gaussian Inc.

[26]

Grimme S. J. Comp. Chem., 2006, 27: 1787.

[27]

Becke A D. Phys. Rev. A, 1988, 38: 3098.

[28]

Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865.

[29]

Perdew J. P., Eds.; Ziesche P., Eschig H., Electronic Structure of Solids’ 91, Akademie Verlag, Berlin, 1991, 11.

[30]

Hamprecht F A, Cohen A, Tozer D J, Handy N C. J. Chem. Phys., 1998, 109: 6264.

[31]

Boese A D, Doltsinis N L, Handy N C, Sprik M. J. Chem. Phys., 2000, 112: 1670.

[32]

Boese A D, Handy N C. J. Chem. Phys., 2001, 114: 5497.

[33]

Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785.

[34]

Adamo C, Barone V. J. Chem. Phys., 1998, 108: 664.

[35]

Handy N C, Cohen A. J. Mol. Phys., 2001, 99: 403.

[36]

Hoe W M, Cohen A J, Handy N C. Chem. Phys. Lett., 2001, 341: 319.

[37]

Becke A D. J. Chem. Phys., 1996, 104: 1040.

[38]

Zhao Y, Truhlar D G. J. Chem. Phys., 2006, 125: 194101.

[39]

Boese A D, Handy N C. J. Chem. Phys., 2002, 116: 9559.

[40]

van Voorhis T, Scuseria G E. J. Chem. Phys., 1998, 109: 400.

[41]

Perdew J P. Phys. Rev. B, 1986, 33: 8822.

[42]

Schmider H L, Becke A D. J. Chem. Phys., 1998, 108: 9624.

[43]

Wilson P J, Bradley T J, Tozer D J. J. Chem. Phys., 2001, 115: 9233.

[44]

Becke A D. J. Chem. Phys., 1993, 98: 1372.

[45]

Henderson T M, Izmaylov A F, Scalmani G, Scuseria G E. J. Chem. Phys., 2009, 131: 044108.

[46]

Becke A D. J. Chem. Phys., 1997, 107: 8554.

[47]

Zhao Y, Truhlar D G. J. Phys. Chem. A, 2004, 108: 6908.

[48]

Xu X, Goddard W A III Proc. Natl. Acad. Sci. USA, 2004, 101: 2673.

[49]

Zhao Y, Lynch B J, Truhlar D G. J. Phys. Chem. A, 2004, 108: 2715.

[50]

Boese A D, Martin J M L. J. Chem. Phys., 2004, 121: 3405.

[51]

Zhao Y, Truhlar D G. Theor. Chem. Acc., 2008, 120: 215.

[52]

Zhao Y, Truhlar D G. J. Phys. Chem. A, 2006, 110: 5121.

[53]

Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 393: 51.

[54]

Chai J D, Head-Gordon M. J. Chem. Phys., 2008, 128: 084106.

[55]

Chai J D, Head-Gordon M. Phys. Chem. Chem. Phys., 2008, 10: 6615.

[56]

Ugarova N N. J. Biolumin. Chemilumin., 1989, 4: 406.

[57]

Viviani V R, Bechara E J H. Photochem. Photobiol., 1995, 62: 490.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/