One-step synthesis and gas sensing properties of hierarchical SnO2 materials

Yue Guan , Chong Wang , Biao Wang , Jian Ma , Xiu-mei Xu , Yan-feng Sun , Feng-min Liu , Xi-shuang Liang , Yuan Gao , Ge-yu Lu

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 837 -840.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 837 -840. DOI: 10.1007/s40242-013-3028-4
Article

One-step synthesis and gas sensing properties of hierarchical SnO2 materials

Author information +
History +
PDF

Abstract

Hierarchical tin oxide(SnO2) architectures were synthesized with a facile hydrothermal method. In the hydrothermal synthesis, sodium dodecyl benzene sulfonate(SDBS) surfactant plays an important role as structure-directing reagent. The synthesized samples were characterized by powder X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(HRTEM). The results clearly reveal that the hierarchical architectures of SnO2 were composed of aggregated nanosheets with a thickness of about 100 nm. A possible mechanism for the formation of the SnO2 hierarchical architectures was proposed. In addition, the gas sensing properties of the as-prepared products were investigated and it was found that the sensor based on the special SnO2 hierarchical architectures exhibited a high response and good selectivity to NO2 at the optimal working temperature of 160 °C.

Keywords

Tin oxide / Hydrothermal method / Sodium dodecyl benzene sulfonate(SDBS) / NO2

Cite this article

Download citation ▾
Yue Guan, Chong Wang, Biao Wang, Jian Ma, Xiu-mei Xu, Yan-feng Sun, Feng-min Liu, Xi-shuang Liang, Yuan Gao, Ge-yu Lu. One-step synthesis and gas sensing properties of hierarchical SnO2 materials. Chemical Research in Chinese Universities, 2013, 29(5): 837-840 DOI:10.1007/s40242-013-3028-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun P, Yu Y S, Xu J. Sens. Actuators B, 2011, 160: 244.

[2]

Bakrania S D, Wooldridge M S. Sensors, 2010, 10: 7002.

[3]

Xu X M, Wang D W, Wang W B. Sens. Actuators B, 2012, 171: 1066.

[4]

Zhang D H, Liu Z Q, Li C, Tang T, Liu X L, Han S, Lei B, Zhou C W. Nano Lett., 2004, 4: 1919.

[5]

Xu H Y, Cui D L, Cao B Q. Chem. Res. Chinese Universities, 2012, 28(6): 1086.

[6]

Sun P, You L, Sun Y F, Chen N K, Li X B, Sun H B, Ma J, Lu G Y. CrystEngComm, 2012, 14: 1701.

[7]

Lee J S, Sim S K, Min B, Cho K, Kim S W, Kim S. J. Cryst. Growth, 2004, 267: 145.

[8]

Sun J B, Xu J, Wang B, Sun P, Liu F M, Lu G Y. Chem. Res. Chinese Universities, 2012, 28(3): 483.

[9]

Korotcenkov G, Cho B K, Gulina L, Tolstoy V. Sens. Actuators B, 2009, 138: 512.

[10]

Wang Y, Lee J Y. J. Phys. Chem. B, 2004, 108: 17832.

[11]

Jia N Q, Zhou Q, Liu L, Yan M M, Jiang Z Y. J. Electroanal. Chem., 2005, 580: 213.

[12]

Wu H B, Chen J S, Lou X W, Hng H H. J. Phys. Chem. C, 2011, 115: 24605.

[13]

Masuda Y, Kato K. J. Cryst. Growth, 2009, 311: 593.

[14]

Sakaushi K, Oaki Y, Uchiyama H, Hosono E, Zhou H S, Imai H. Small, 2010, 6: 776.

[15]

Zhao Q, Xie Y, Dong T, Zhang Z. J. Phys. Chem. C, 2007, 111: 11598.

[16]

Shinde V R, Gujar T P, Lokhande C D. Sens. Actuators B, 2007, 123: 701.

[17]

Gong H, Hu J Q, Wang J H, Ong C H, Zhu F R. Sens. Actuators B, 2006, 115: 247.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/