One-step synthesis and gas sensing properties of hierarchical SnO2 materials
Yue Guan , Chong Wang , Biao Wang , Jian Ma , Xiu-mei Xu , Yan-feng Sun , Feng-min Liu , Xi-shuang Liang , Yuan Gao , Ge-yu Lu
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 837 -840.
One-step synthesis and gas sensing properties of hierarchical SnO2 materials
Hierarchical tin oxide(SnO2) architectures were synthesized with a facile hydrothermal method. In the hydrothermal synthesis, sodium dodecyl benzene sulfonate(SDBS) surfactant plays an important role as structure-directing reagent. The synthesized samples were characterized by powder X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(HRTEM). The results clearly reveal that the hierarchical architectures of SnO2 were composed of aggregated nanosheets with a thickness of about 100 nm. A possible mechanism for the formation of the SnO2 hierarchical architectures was proposed. In addition, the gas sensing properties of the as-prepared products were investigated and it was found that the sensor based on the special SnO2 hierarchical architectures exhibited a high response and good selectivity to NO2 at the optimal working temperature of 160 °C.
Tin oxide / Hydrothermal method / Sodium dodecyl benzene sulfonate(SDBS) / NO2
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
/
| 〈 |
|
〉 |