Transformation of ethanol to ethyl acetate over Cu/SiO2 catalysts modified by ZrO2

Xue Yu , Wan-chun Zhu , Shuang Gao , Li-li Chen , Hong-jing Yuan , Jia-huan Luo , Zhen-lü Wang , Wen-xiang Zhang

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 986 -990.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 986 -990. DOI: 10.1007/s40242-013-3024-8
Article

Transformation of ethanol to ethyl acetate over Cu/SiO2 catalysts modified by ZrO2

Author information +
History +
PDF

Abstract

Direct transformation of ethanol to ethyl acetate was investigated on a series of Cu(ZrO2)/SiO2 catalysts. Inductively coupled plasma(ICP), surface area analysis, X-ray diffraction(XRD), H2-temperature programmed reduction(H2-TPR), X-ray photoelectron spectroscopy(XPS), NH3-temperature programmed desorption(NH3-TPD) and Fourier transform-infrared spectroscopy(FTIR) techniques were used to characterize the catalysts. The results reveal that ZrO2 can improve the dispersion of copper species and increase the acidity of the Cu(ZrO2)/SiO2 catalysts. The Cu0 is responsible for ethanol dehydrogenation to acetaldehyde, and both the Lewis acid and Brønsted acid sites were in favor of the selectivity to ethyl acetate. The synergistic effect of Cu0 and an appropriate amount of acidic sites played an important role in the production of ethyl acetate.

Keywords

Ethyl acetate / Ethanol / Zirconium / Copper based catalyst / Acid site

Cite this article

Download citation ▾
Xue Yu, Wan-chun Zhu, Shuang Gao, Li-li Chen, Hong-jing Yuan, Jia-huan Luo, Zhen-lü Wang, Wen-xiang Zhang. Transformation of ethanol to ethyl acetate over Cu/SiO2 catalysts modified by ZrO2. Chemical Research in Chinese Universities, 2013, 29(5): 986-990 DOI:10.1007/s40242-013-3024-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gaspar A B, Esteves A M L, Mendes F M T, Barbosa F G, Appel L G. Appl. Catal. A, 2009, 363: 109.

[2]

Weinstein R D, Ferens A R, Orange R J, Lemaire P. Carbon, 2011, 49: 701.

[3]

Inui K, Kurabayashi T, Sato S. Appl. Catal. A, 2002, 237: 53.

[4]

Inui K, Kurabayashi T, Sato S. J. Catal., 2002, 212: 207.

[5]

Inui K, Kurabayashi T, Sato S, Ichikawa N. J. Mol. Catal. A: Chem., 2004, 216: 147.

[6]

Colley S W, Tabatabaei J, Waugh K C, Wood M A. J. Catal., 2005, 236: 21.

[7]

Sánchez A B, Homs N, Fierro J L G, Piscina P R D L. Catal. Today, 2005, 107/108: 431.

[8]

Wang L X, Zhu W C, Zheng D F, Yu X, Cui J, Jia M, Zhang W X, Wang Z L. Reac. Kinet. Mech. Cat., 2010, 101: 365.

[9]

Zonetti P C, Celnik J, Letichevsky S, Gaspar A B, Appel L G. J. Mol. Catal. A: Chem., 2011, 334: 29.

[10]

Zhang M, Li G, Jiang H, Zhang J. Catal. Lett., 2011, 141: 1104.

[11]

Guerreiro E D, Gorriz O F, Rivarola J B, Arrúa L A. Appl. Catal. A, 1997, 165: 259.

[12]

Zhu W C, Wang L X, Liu S Y, Wang Z. React. Kinet. Catal. Lett., 2008, 93: 93.

[13]

Zhu X, Li X, Jia M, Liu G, Zhang W, Jiang D. Appl. Catal. A, 2005, 282: 155.

[14]

Su W G, Wang S G, Ying P L, Feng Z C, Li C. J. Catal., 2009, 268: 165.

[15]

Si Z C, Weng D, Wu X D, Li J, Li G. J. Catal., 2010, 271: 43.

[16]

Guerrero S, Guzmán I, Aguila G, Araya P. Catal. Commun., 2009, 11: 38.

[17]

Turco M, Cammarano C, Bagnasco G, Moretti E, Storaro L, Talon A, Lenarda M. Appl. Catal. B, 2009, 91: 101.

[18]

Esposito S, Turco M, Bagnasco G, Cammarano C, Pernice P. Appl. Catal. A, 2011, 403: 128.

[19]

Ji D H, Zhu W C, Wang Z L, Wang G. Catal. Commun., 2007, 8: 1891.

[20]

Wang L C, Liu Q, Chen M, Liu Y M, Cao Y, He, Fan K N. J. Phys. Chem. C, 2007, 111: 16549.

[21]

Jones S D, Neal L M, Everett M L, Hoflund G B, Hagelin-Weaver H E. Appl. Surf. Sci., 2010, 256: 7345.

[22]

Zhuang H D, Bai S F, Liu X M, Yan Z F. J. Fuel. Chem. Technol., 2010, 38: 462.

[23]

Chary K V R, Sagar G V, Naresh D, Seela K K, Sridhar B. J. Phys. Chem. B, 2005, 109: 9437.

[24]

Matter P H, Ozkan U S. J. Catal., 2005, 234: 463.

[25]

Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro R M, Fierro J L G. J. Catal., 2003, 219: 389.

[26]

Chen X R, Ju Y H, Mou C Y. J. Phys. Chem. C, 2007, 111: 18731.

[27]

Turco M, Bagnasco G, Cammarano C, Senese P, Costantino U, Sisani M. Appl. Catal. B, 2007, 77: 46.

[28]

Zheng H Y, Zhu Y L, Huang L, Zeng Z Y, Wan H J, Li Y W. Catal. Commun., 2008, 9: 342.

[29]

Chen L F, Noreña L E, Navarrete J, Wang J A. Mater. Chem. Phys., 2006, 97: 236.

[30]

Zhang Y Q, Wang S J, Wang J W, Lou L L, Zhang C, Liu S X. Solid State Sci., 2009, 11: 1412.

[31]

Jia A Z, Li J, Zhang Y Q, Song Y J, Liu S X. Mater. Sci. Eng. C, 2008, 28: 1217.

[32]

Salas P, Wang J A, Armendariz H, Angeles Chavez C, Chen L F. Mater. Chem. Phys., 2009, 114: 139.

[33]

Guo X K, Xie P P, Lin S D. J. Fuel. Chem. Technol., 2008, 36: 732.

[34]

Chang F W, Kuo W Y, Lee K C. Appl. Catal. A, 2003, 246: 253.

[35]

Tada M, Bal R, Namba S, Iwasawa Y. Appl. Catal. A, 2006, 307: 78.

[36]

Jadhav S V, Jinka K M, Bajaj H C. Appl. Catal. A, 2010, 390: 158.

[37]

Zhao T S, Takemoto T, Tsubaki N. Catal. Commun., 2006, 7: 647.

[38]

He D, Ding Y, Luo H, Li C. J. Mol. Catal. A: Chem., 2004, 208: 267.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/