Hydrothermal synthesis, characterization and photoluminescence properties of GdOHCO3 rhombic microcrystals

You-jin Zhang , Zhen-yu Xu , Xiao-bin Yin , Hong-mei He

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 841 -844.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 841 -844. DOI: 10.1007/s40242-013-3022-x
Article

Hydrothermal synthesis, characterization and photoluminescence properties of GdOHCO3 rhombic microcrystals

Author information +
History +
PDF

Abstract

GdOHCO3 rhombic microcrystals were synthesized by hydrothermal method with urea used as the precipitator. Experimental parameters, such as the molar ratio of the starting reagents, reaction temperature and reaction time were examined. The as-obtained product was characterized by powder X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FTIR) and spectrofluorometry. The main reactions to form GdOHCO3 were proposed. In addition, the photoluminescence(PL) properties of GdOHCO3 rhombic microcrystals were discussed. The broad band located between 350 nm and 600 nm in the emission spectrum can be attributed to the self-trapped exciton luminescence.

Keywords

GdOHCO3 / Hydrothermal method / Crystal growth / Rhombic microcrystal / Photoluminescence

Cite this article

Download citation ▾
You-jin Zhang, Zhen-yu Xu, Xiao-bin Yin, Hong-mei He. Hydrothermal synthesis, characterization and photoluminescence properties of GdOHCO3 rhombic microcrystals. Chemical Research in Chinese Universities, 2013, 29(5): 841-844 DOI:10.1007/s40242-013-3022-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xia S Q, Svilen B. Chem. Mater., 2010, 22: 840.

[2]

Sun C W, Sun J, Xiao G L, Zhang H R, Qiu X P, Li H, Chen L Q. J. Phys. Chem. B, 2006, 110: 13445.

[3]

Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H. J. Am. Chem. Soc., 2006, 128: 6426.

[4]

Yu F P, Zhang S J, Zhao X, Yuan D R, Wang C M, Thomas R S. Cryst. Growth Des., 2010, 10: 1871.

[5]

Wang X, Zhuang J, Peng Q, Li Y D. Inorg. Chem., 2006, 45: 6661.

[6]

Zhou K B, Wang X, Sun X M, Li Y D. J. Catal., 2005, 229: 206.

[7]

Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P, Guo L H. Nano Lett., 2004, 4: 2191.

[8]

Rhyee J S, Cho E, Lee K H, Lee S M, Kim H S, Kwon Y S. J. Appl. Phys., 2010, 107: 053705.

[9]

Iqbal M J, Ahmad Z. J. Power Sources, 2008, 179: 763.

[10]

Wang X, Sun X M, Yu D P, Zou B S, Li Y D. Adv. Mater., 2003, 15: 1442.

[11]

Wang X, Li Y D. Chem. Eur. J., 2003, 9: 5627.

[12]

Cabarrecq C B, Trombe J C. J. Chem. Crystallogr., 2009, 39: 786.

[13]

Yan R X, Sun X M, Wang X, Peng Q, Li Y D. Chem. Eur. J., 2005, 11: 2183.

[14]

Fang Y P, Xu A W, Song R Q, Zhang H X, You L P, Liu H Q. J. Am. Chem. Soc., 2003, 125: 16025.

[15]

Wang X, Li Y D. Angew. Chem. Int. Ed., 2003, 115: 3497.

[16]

Zhang X J, Xing Y H, Wang C G, Han J, Li J, Ge M F, Zeng X Q, Niu S Y. Inorg. Chim. Acta, 2009, 362: 1058.

[17]

Zhang Y J, Guan H M. Mater. Res. Bull., 2005, 40: 1536.

[18]

Zhang Y J, Guan H M. J. Cryst. Growth, 2003, 256: 156.

[19]

Muresana L, Popovici E J, Grecua R, Tudoran L B. J. Alloy. Compd., 2009, 471: 421.

[20]

Guan H M, Zhang Y J. J. Solid State Chem., 2004, 177: 781.

[21]

Zhu W Q, Xing X P, Zhang C, Yuan Y K, Chen Y S. Chem. J. Chinese Universities, 2012, 33(5): 1036.

[22]

Zou X J, Li X Y, Zhao Q D, Chen G H. Chem. J. Chinese Universities, 2012, 33(5): 1046.

[23]

Haschke J M, Eyring L. Inorg. Chem., 1971, 10: 2267.

[24]

Zhang Y J, Han K D, Cheng T, Fang Z Y. Inorg. Chem., 2007, 46: 4713.

[25]

Zhang Y J, Han K D, Yin X B, Fang Z Y, Xu Z Y, Zhu W. J. Cryst. Growth, 2009, 311: 3883.

[26]

Li Q, Han Z H, Shao M W, Liu X M, Qian Y T. J. Phys. Chem. Solids, 2003, 64: 295.

[27]

Zhang Y J, Gao M R, Han K D, Fang Z Y, Yin X B, Xu Z Y. J. Alloy. Compd., 2009, 474: 598.

[28]

Qi R J, Zhu Y J, Cheng G P, Huang Y H. Nanotechnology, 2005, 16: 2502.

[29]

Han Z H, Qian Y T, Tang K B, Lu G Q, Yu S H, Guo N. Inorg. Chem. Commun., 2003, 6: 1117.

[30]

Han Z H, Xu P, Ratinac K R, Lu G Q. J. Cryst. Growth, 2004, 273: 248.

[31]

Han Z H, Guo N, Tang K B, Yu S H, Zhao H Q, Qian Y T. J. Cryst. Growth, 2000, 219: 315.

[32]

Han Z H, Yang Q, Lu G Q. J. Solid State Chem., 2004, 177: 3709.

[33]

Zhao D L, Yang Q, Han Z H, Zhou J, Xu S B, Sun F Y. Solid State Sci., 2008, 10: 31.

[34]

Talik E, Klimczak M, Tran V H, Kusz J, Hofmeister W, Winiarski A, Troc R. Intermetallics, 2010, 18: 27.

[35]

Zhao D, Cheng W D, Zhang H, Huang S P, Fang M, Zhang W L, Yang S L. J. Mol. Struct., 2009, 919: 178.

[36]

Pei Y, Chen X F, Mao R H, Ren G H. J. Cryst. Growth, 2005, 279: 390.

[37]

Kawabe Y, Yamanaka A, Hanamura E, Kimura T, Takiguchi Y, Kan H, Tokura Y. J. Appl. Phys., 2000, 88: 7594.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/