In situ synthesis of rosin derived chiral derivatizing agents for 31P NMR assays of amine and alcohol enantiomers

Qiang Wu , Gui-yang Yao , Ye Zhang , Heng-shan Wang , Lin Yang , Yong-tao Zhu , Ying-ming Pan

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 894 -899.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 894 -899. DOI: 10.1007/s40242-013-3009-7
Article

In situ synthesis of rosin derived chiral derivatizing agents for 31P NMR assays of amine and alcohol enantiomers

Author information +
History +
PDF

Abstract

Chiral alcohols(3, 5) were synthesized in optically pure forms from easily available rosin acid in short-steps. A comprehensive protocol for the enantiomeric excess assays of mono-or di-functional-grouped chiral secondary amine or alcohol has been established with them used as chiral auxiliary for chiral phosphorus derivatizing agents(CPDAs) in 31P NMR tests. Chemical shift difference(Δδ P) values ranging from 4.5 to 0.15 between two diastereoisomers of the CPDAs and the aryl substrates were obtained. Positive Δδ R-S was observed for all the tested alcohol P(III) and P(V) derivatives, while negative Δδ R-S was observed for all the amines.

Keywords

Chiral phosphorus derivatizing agent / Rosin / Enantiodiscrimination / 31P NMR

Cite this article

Download citation ▾
Qiang Wu, Gui-yang Yao, Ye Zhang, Heng-shan Wang, Lin Yang, Yong-tao Zhu, Ying-ming Pan. In situ synthesis of rosin derived chiral derivatizing agents for 31P NMR assays of amine and alcohol enantiomers. Chemical Research in Chinese Universities, 2013, 29(5): 894-899 DOI:10.1007/s40242-013-3009-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Błażewska K M, Gajda T. Tetrahedron: Asymmetry, 2009, 20: 1337.

[2]

Amberg M, Kempter I, Bergsträßer U, Stapf G, Hartung J. Tetrahedron: Asymmetry, 2011, 22: 752.

[3]

Wenzel T J, Chisholm C D. Prog. Nucl. Magn. Reson. Spectrosc., 2011, 59: 1.

[4]

Wenzel T J, Wilcox J D. Chirality, 2003, 15: 256.

[5]

Wang Z, Li Z Q, Yu D H, Weng L, Liu M, Zhang G R, Cao S G. Chem. Res. Chinese Universities, 2004, 20(5): 575.

[6]

Wenzel T J, Thurston J E. J. Org. Chem., 2000, 65: 5.

[7]

Lovely A E, Wenzel T J. Org. Lett., 2006, 8: 2823.

[8]

Joseph G. Chirality, 2008, 20: 5.

[9]

Thomas R, Frederik N, Naraschewski J E. Tetrahedron: Asymmetry, 2009, 20: 362.

[10]

Finn M G. Chirality, 2002, 14: 534.

[11]

Zhu L, Shabbir S H, Anslyn E V. Chem. Eur. J., 2006, 13: 99.

[12]

Mirri G, Bull S D, Horton P N, James T D, Male L, Tucker J H R. J. Am. Chem. Soc., 2010, 132: 8903.

[13]

Demchuk O M, Świerczynska W, Pietrusiewicz K M, Woźnica M, Wójcik D, Frelek J. Tetrahedron: Asymmetry, 2008, 19: 2339.

[14]

Chauvin A S, Bernardinelli G, Alexakis A. Tetrahedron: Asymmetry, 2006, 17: 2203.

[15]

Chi Y G, Peelen T J, Gellman S H. Org. Lett., 2005, 7: 3469.

[16]

Wu Q, Yao G Y, Zhu Y T, Wang H S, He C H, Pan Y M. Chin. J. Org. Chem., 2011, 32: 900.

[17]

Seebacher W, Hüfner A, Haslinger E, Weis R. Monatsh. Chem., 1998, 129: 697.

[18]

Khlebnikova T B, Karpyshev N N, Tolstilova O V, Tolstilova A G. Chirality, 2004, 16: S40.

[19]

Benniston A C, Gunning P, Peacock R D. J. Org. Chem., 2005, 70: 115.

[20]

Yang G S, Yan B, Lei L, Wang W G, Liu C B. Chem. J. Chinese Universities, 2000, 21(11): 1745.

[21]

Rekharsky M, Inoue Y. J. Am. Chem. Soc., 2000, 122: 4418.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/