Synthesis and luminescent properties of iridium complexes with reduced concentration quenching effect

Li-ying Zhang , Bin Li , Jian-xing Wang

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 686 -689.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 686 -689. DOI: 10.1007/s40242-013-3005-y
Article

Synthesis and luminescent properties of iridium complexes with reduced concentration quenching effect

Author information +
History +
PDF

Abstract

Three novel cyclometalated ligands 1-benzyl-2-phenyl-1H-benzoimidazole(BPBM), 1-(4-methoxy-benzyl)-2-(4-methoxy-phenyl)-1H-benzoimidazole(MBMPB) and 4-[2-(4-dimethylamino-phenyl)-benzoinidazol-1-ylmethyl]-phenyl-dimethyl-amine(DBPA) were designed and synthesized, and the corresponding highly efficiency green-emitting phosphorescent iridium complexes Ir(BPBM)2(acac)(1), Ir(MBMPB)2(acac)(2) and Ir(DPBA)2(acac) (3) with acetylacetone(acac) as auxiliary ligand were also synthesized. The ligands are functionalized by bulky non-planarity substituents, thus the phosphorescent concentration quenching is substantially suppressed, and all the complexes exhibit bright photoluminescence(PL) in solid state. The photo-physical properties of the three iridium complexes were researched in detail. The results indicate that they have potential application in fabricating non-doped electrophosphorescence device.

Keywords

Green-emitting / Iridium complex / Bulky non-planarity substituent

Cite this article

Download citation ▾
Li-ying Zhang, Bin Li, Jian-xing Wang. Synthesis and luminescent properties of iridium complexes with reduced concentration quenching effect. Chemical Research in Chinese Universities, 2013, 29(4): 686-689 DOI:10.1007/s40242-013-3005-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adachi C, Baldo M A, Forrest S R, Thompson M E. Appl. Phys. Lett., 2000, 77: 904.

[2]

Ma Y G, Zhang H Y, Shen J C, Che C M. Synth. Met., 1998, 94: 245.

[3]

Bian Z Q, Gao D Q, Sun C Y, Wang K Z, Jin L P, Huang C H. Chem. Res. Chinese Universities, 2002, 18(4): 466.

[4]

Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K. J. Am. Chem. Soc., 2003, 125(42): 12971.

[5]

Xin H, Li F Y, Shi M, Bian Z Q, Huang C H. J. Am. Chem. Soc., 2003, 125: 7166.

[6]

Yang C H, Fang K H, Chen C H, Sun I W. Chem. Commun., 2004, 2232.

[7]

Liu Y, Liu S L, Wang Y G. Chem. Res. Chinese Universities, 2010, 26(2): 249.

[8]

Yang C H, Tai C C, Sun I W. J. Mater. Chem., 2004, 14(6): 947.

[9]

Lupton J M, Samuel I D W, Frampton M J, Beavington R, Burn P L. Adv. Funct. Mater., 2001, 11: 287.

[10]

Liu J, Chen H B, Liu S G. Chem. Res. Chinese Universities, 2012, 28(4): 572.

[11]

Liu Z W, Guan M, Bian Z Q, Nie D B, Gong Z L, Li Z B, Huang C H. Adv. Funct. Mater., 2006, 16: 1441.

[12]

Ding J Q, Gao J, Cheng Y X, Xie Z Y, Wang L X, Ma D G, Jing X B, Wang F S. Adv. Funct. Mater., 2006, 16: 575.

[13]

Markham J P J, Lo S C, Magennis S W, Burn P L, Samuel I D W. Appl. Phys. Lett., 2002, 80: 2645.

[14]

Zhou G C, Ho L, Wong W Y, Wang Q, Ma D G, Wang L X, Lin Z Y, Marder T B, Beeby A. Adv. Funct. Mater., 2008, 18: 499.

[15]

Chou P T, Chi Y. Chem. Eur. J., 2007, 13: 380.

[16]

Ashwini K A, Samson A. J. Chem. Mater., 1996, 8: 579.

[17]

Kober E M, Caspar J V, Lumpkin R S, Meyer T J. J. Phys. Chem., 1986, 90: 3722.

[18]

Spellane P, Watts R J, Vogler A. Inorg. Chem., 1993, 32: 5633.

[19]

Strickler S J, Berg R A J. J. Chem. Phys., 1962, 37: 814.

[20]

Einstein A. Phys. Z., 1917, 18: 121.

[21]

Zhang J P, Jin L, Zhang H X, Bai F Q. Chem. J. Chinese Universities, 2011, 32(12): 2885.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/