Preparation of anion exchange membrane based on imidazolium functionalized poly(arylene ether ketone)

Hao Zhou , Na Zhang , Wen-jia Ma , Cheng-ji Zhao , Hui Na

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 811 -815.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 811 -815. DOI: 10.1007/s40242-013-2467-2
Article

Preparation of anion exchange membrane based on imidazolium functionalized poly(arylene ether ketone)

Author information +
History +
PDF

Abstract

The authors presented a novel synthetic route for the imidazolium functionalized poly(arylene ether ketone)s, derived from an engineering plastics polymer, a poly(arylene ether ketone) with 3,3′,5,5′-tetramethyl-4,4′-dihydroxybiphenyl moiety(PAEK-TM). The preparation of anion exchange membranes comprised converting benzylic methyl groups to bromomethyl groups by a radical reaction, followed by the functionalization of bromomethylated PAEK with alkyl imidazoles, i.e., methyl, butyl or vinyl imidazole. The structure of imidazolium functionalized PAEK was proved by 1H NMR spectra. A class of flexible and tough membranes was then achieved by subsequent film-forming and anion exchange processes. The water uptake and hydroxide conductivities of membranes are comparable or superior to those of quaternary ammonium(QA) anion exchange membranes. This work demonstrated a new route for non-QA anion exchange membrane design, avoiding the chloromethylation reagent and precisely controlling the degree and location of imidazolium groups.

Keywords

Anion exchange membrane / Poly(arylene ether ketone) / Hydroxide conductivity / Imidazolium

Cite this article

Download citation ▾
Hao Zhou, Na Zhang, Wen-jia Ma, Cheng-ji Zhao, Hui Na. Preparation of anion exchange membrane based on imidazolium functionalized poly(arylene ether ketone). Chemical Research in Chinese Universities, 2013, 29(4): 811-815 DOI:10.1007/s40242-013-2467-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blaustein M P. Biochim. Biophys. Acta, 1967, 13: 653.

[2]

Liu L L, Zhang J, Qiao J L. Chem. J. Chinese Universities, 2012, 33(8): 1842.

[3]

Tang D P, Pan J, Lu S F, Zhuang L, Lu J T. Sci. China Chem., 2010, 53(2): 357.

[4]

Lee C K, Sundar S M, Kwon J, Han H. J. Polym. Sci. Poly. Chem., 2004, 42: 3612.

[5]

Norsten T B, Guiver M D, Murphy J, Astill T, Navessin T, Holdcroft S, Frankamp B L, Rotello V M, Ding J F. Adv. Funct. Mater., 2006, 16: 1814.

[6]

Liu Y, Liu S B, Zhang Z L, Hao X G. Chinese Journal of Power Sourse, 2006, 30: 125.

[7]

Mika A M, Childs R F, Dickson J M, McCarry B E, Gagnon D R. J. Membr. Sci., 1995, 108: 37.

[8]

Taylor L D, Laughlin P M. J. Appl. Polym. Sci., 1976, 20: 2225.

[9]

Xu T W, Liu Z M, Li Y, Yang W H. J. Membr. Sci., 2008, 320: 232.

[10]

Hibbs M R, Fujimoto C H, Cornelius C J. Macromolecules, 2010, 43: 2349.

[11]

Gu S, Cai R, Luo T, Chen Z W, Sun M, Liu Y, He G H, Yan Y S. Angew. Chem. Int. Ed., 2009, 48: 6499.

[12]

Wang J H, Li S H, Zhang S B. Macromolecules, 2010, 43: 3890.

[13]

Lin B, Qiu L, Lu J, Yan F. Chem. Mater., 2010, 22: 6718.

[14]

Zhang Q, Li S, Zhang S. Chem. Commun., 2010, 46: 7495.

[15]

Zhang F X, Zhang H M, Qu C. J. Mater. Chem., 2011, 21: 12744.

[16]

Wang Z, Gao H C, Zhao C J, Chang H, Zhang H X, Na H. Chem. J. Chinese Universities, 2011, 32(8): 1884.

[17]

Ni J, Zhao C J, Zhang G, Zhang Y, Wang J, Ma W J, Liu Z G, Na H. Chem. Commun., 2011, 47: 8943.

[18]

Deavin O I, Murphy S, Ong A L, Poynton S D, Zeng R, Herman H, Varcoe J R. Energy Environ. Sci., 2012, 5: 8584.

[19]

Ye Y, Elabd Y A. Macromolecules, 2011, 44: 8494.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/