Synthesis and photovoltaic properties of non-fullerene solution processable small molecule acceptors
Hui Li , Zhao-yang Liu , Xiao-yu Zhang , Shi-yu Yao , Shan-peng Wen , Wen-jing Tian
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 596 -599.
Synthesis and photovoltaic properties of non-fullerene solution processable small molecule acceptors
Two non-fullerene small molecules, BT-C6 and BT-C12, based on the vinylene-linked benzothiadiazole-thiophene(BT) moiety flanked with 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile have been synthesized and characterized by solution/thin film UV-Vis absorption, photoluminescence(PL), and cyclic voltammetry(CV) measurements. The two molecules show intense absorption bands in a wide range from 300 nm to 700 nm and low optical bandgaps for BT-C6(1.60 eV) and for BT-C12(1.67 eV). The lowest unoccupied molecular orbital(LUMO) levels of both the molecules are relatively higher than that of [6,6]-phenyl C61 butyric acid methyl ester(PCBM), promising high open circuit voltage(V oc) for photovoltaic application. Bulk heterojunction(BHJ) solar cells with poly(3-hexylthiophene) (P3HT) as the electron donor and the two molecules as the acceptors were fabricated. Under 100 mW/cm2 AM 1.5 G illumination, the devices based on P3HT:BT-C6(1:1, mass ratio) show a power conversion efficiency(PCE) of 0.67%, a short-circuit current(J sc) of 1.63 mA/cm2, an open circuit voltage(V oc) of 0.74 V, and a fill factor(FF) of 0.56.
Non-fullerene small molecule / Electron acceptor / Bulk heterojunction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
/
| 〈 |
|
〉 |