Synthesis and photovoltaic properties of non-fullerene solution processable small molecule acceptors

Hui Li , Zhao-yang Liu , Xiao-yu Zhang , Shi-yu Yao , Shan-peng Wen , Wen-jing Tian

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 596 -599.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 596 -599. DOI: 10.1007/s40242-013-2461-8
Article

Synthesis and photovoltaic properties of non-fullerene solution processable small molecule acceptors

Author information +
History +
PDF

Abstract

Two non-fullerene small molecules, BT-C6 and BT-C12, based on the vinylene-linked benzothiadiazole-thiophene(BT) moiety flanked with 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile have been synthesized and characterized by solution/thin film UV-Vis absorption, photoluminescence(PL), and cyclic voltammetry(CV) measurements. The two molecules show intense absorption bands in a wide range from 300 nm to 700 nm and low optical bandgaps for BT-C6(1.60 eV) and for BT-C12(1.67 eV). The lowest unoccupied molecular orbital(LUMO) levels of both the molecules are relatively higher than that of [6,6]-phenyl C61 butyric acid methyl ester(PCBM), promising high open circuit voltage(V oc) for photovoltaic application. Bulk heterojunction(BHJ) solar cells with poly(3-hexylthiophene) (P3HT) as the electron donor and the two molecules as the acceptors were fabricated. Under 100 mW/cm2 AM 1.5 G illumination, the devices based on P3HT:BT-C6(1:1, mass ratio) show a power conversion efficiency(PCE) of 0.67%, a short-circuit current(J sc) of 1.63 mA/cm2, an open circuit voltage(V oc) of 0.74 V, and a fill factor(FF) of 0.56.

Keywords

Non-fullerene small molecule / Electron acceptor / Bulk heterojunction

Cite this article

Download citation ▾
Hui Li, Zhao-yang Liu, Xiao-yu Zhang, Shi-yu Yao, Shan-peng Wen, Wen-jing Tian. Synthesis and photovoltaic properties of non-fullerene solution processable small molecule acceptors. Chemical Research in Chinese Universities, 2013, 29(3): 596-599 DOI:10.1007/s40242-013-2461-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang CW. Appl. Phys. Lett., 1986, 48: 183.

[2]

Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270: 1789.

[3]

Brabec C J S, Gowrisanker J J, Halls M, Laird D, Jia S J, Williams S P. Adv. Mater., 2010, 22: 3839.

[4]

Zhang F L, Mammo W, Andersson L M, Admassie S, Andersson M R, Inganäs O. Adv. Mater., 2006, 18: 2169.

[5]

Dennler G, Sariciftci N S. Proc. IEEE, 2005, 93: 1429.

[6]

Sun Y M, Welch G C, Leong W L, Takacs C J, Bazan G C, Heeger A J. Nat. Mater., 2012, 11: 44.

[7]

Li Z, Ding J F, Song N H, Lu J P, Tao Y. J. Am. Chem. Soc., 2010, 132: 13160.

[8]

Brunetti F G, Gong X, Tong M, Heeger A J, Wudl F. Angew. Chem. Int. Ed., 2010, 49: 532.

[9]

Zhao G J, He Y J, Li Y F. Adv. Mater., 2010, 22: 4355.

[10]

Chirvase D, Parisi J, Hummelen J C, Dyakonov V. Nanotechnology, 2004, 15: 1317.

[11]

Scharber M C, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J. Adv. Mater., 2006, 18: 789.

[12]

Mishra A, Bäuerle P. Angew. Chem. Int. Ed., 2012, 51: 2020.

[13]

Bloking J T, Han X, Higgs A T, Kastrop J P, Pandey L, Norton J E, Risko C, Chen C E, Brédas J L, McGehee M D, Sellinger A. Chem. Mater., 2011, 23: 5484.

[14]

Li Z F, Pei J N, Li Y W, Xu B, Deng M, Liu Z Y, Li H, Lu H G, Li Q, Tian W J. J. Phys. Chem. C, 2010, 114: 18270.

[15]

Chen J, Cao Y. Acc. Chem. Res., 2009, 42: 1709.

[16]

Ferguson A J, Kopidakis N, Shaheen S E, Rumbles G. J. Phys. Chem. C, 2008, 112: 9865.

[17]

Ma W, Yang C, Gong X, Lee K, Heeger A J. Adv. Funct. Mater., 2005, 15: 1617.

[18]

Sharma G D, Suresh P, Mikroyannidis J A, Stylianakis M M. J. Mater. Chem., 2010, 20: 561.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/