Mechanism of xylan pyrolysis by Py-GC/MS

Shu-rong Wang , Tao Liang , Bin Ru , Xiu-juan Guo

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 782 -787.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 782 -787. DOI: 10.1007/s40242-013-2447-6
Article

Mechanism of xylan pyrolysis by Py-GC/MS

Author information +
History +
PDF

Abstract

In order to investigate the decomposition behavior of hemicellulose, xylan was chosen as the representative of hemicellulose to study the fast pyrolysis on the combination system of analytical pyrolyzer and gas chromatograph coupled with mass spectrometer(Py-GC/MS). The main condensable products of xylan pyrolysis consisted of acids, aldehydes, and ketones; while gas products contained CO2, CO, CH4 and H2. Acetic acid and furfural were the most abundant products with the highest contents of 20.11% and 20.24% respectively. While furfural and acetic acid were formed competitively with residence time and temperature increases, the distribution of xylan pyrolysis products did not vary with the residence time and temperature, while the total content of several kinds of products changed a lot. According to the analysis of experimental data, a reaction pathway of xylan decomposition was deduced so as to illustrate the formation mechanism of main products.

Keywords

Xylan / Pyrolysis / Py-GC/MS / Acetic acid / Furfural

Cite this article

Download citation ▾
Shu-rong Wang, Tao Liang, Bin Ru, Xiu-juan Guo. Mechanism of xylan pyrolysis by Py-GC/MS. Chemical Research in Chinese Universities, 2013, 29(4): 782-787 DOI:10.1007/s40242-013-2447-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jin Z Y. Carbohydrate Chemistry, 2008, Beijing: Chemical Industry Press.

[2]

Lavarack B P, Griffin G J, Rodman D. Biomass Bioenerg., 2002, 23(5): 367.

[3]

Girio F M, Fonseca C, Carvalheiro F, Duarte L C, Marques S, Bogel-Lukasik R. Bioresource Technol., 2010, 101(13): 4775.

[4]

Xiong W M, Fu Y, Lai D M, Guo Q X. Chem. J. Chinese Universities, 2009, 30(9): 1754.

[5]

Bridgwater A V. Catal. Today, 1996, 29: 285.

[6]

Dodd D, Cann I K O. Glob. Change Biol. Bioenerg., 2009, 1: 2.

[7]

Guo X J, Wang S R, Wang K G, Luo Z Y. Chem. Res. Chinese Universities, 2011, 27(3): 426.

[8]

Orfao J J M, Antunes F J A, Figueiredo J L. Fuel, 1999, 78: 349.

[9]

Worasuwannarak N, Sonobe T, Tanthapanichakoon W. J. Anal. Appl. Pyrol., 2007, 78: 265.

[10]

Yang H P, Yan R, Chen H P, Lee D H, Zheng C G. Fuel, 2007, 86: 1781.

[11]

Yang H P, Yan R, Chen H P, Zheng C G, Lee D H, Liang D T. Energ. Fuel, 2006, 20: 388.

[12]

Couhert C, Commandre J M, Salvador S. Fuel, 2009, 88: 408.

[13]

Wang S R, Guo X J, Wang K G, Luo Z Y. J. Anal. Appl. Pyrol., 2011, 91: 183.

[14]

Bendahou A, Dufresne A, Kaddami H, Habibi Y. Carbohyd. Polym., 2007, 68: 601.

[15]

Hosoya T, Kawamoto H, Saka S. J. Anal. Appl. Pyrol., 2007, 78: 328.

[16]

Khezami L, Chetouani A, Taouk B, Capart R. Powder Technol., 2005, 157: 48.

[17]

Wang S R, Tan H, Luo Z Y, Wang L, Cen K F. J. Zhejiang Univ.(Eng. Sci.), 2006, 40(3): 419.

[18]

Yang C, Lu X, Lin W, Yang X, Yao J. Chem. Res. Chinese Universities, 2006, 22(4): 524.

[19]

Wang S R, Guo X J, Liang T, Zhou Y, Luo Z Y. Bioresource Technol., 2012, 104: 722.

[20]

Lu Q, Li W Z, Dong Z, Zhu X F. J. Anal. Appl. Pyrol., 2009, 84: 131.

[21]

Guo X J, Wang S R, Zhou Y, Luo Z Y. Int. J. Energ. Environ., 2011, 5(4): 524.

[22]

Nowakowski D J, Woodbridge C R, Jones J M. J. Anal. Appl. Pyrol., 2008, 83: 197.

[23]

Alén R, Kuoppala E, Oesch P. J. Anal. Appl. Pyrol., 1996, 36: 137.

[24]

Beall F C. Wood Fiber Sci., 1969, 1(3): 215.

[25]

Peng Y J, Wang S R. J. Anal. Appl. Pyrol., 2010, 88: 134.

[26]

Saha B C. J. Ind. Microbiol. Biotechnol., 2003, 30: 79.

[27]

Ponder G R, Richard G N. Carbohyd. Res., 1991, 218: 143.

[28]

Shen D K, Gu S, Bridgwater A V. J. Anal. Appl. Pyrol., 2010, 87: 199.

[29]

Evans R J, Milne T A. Energ. Fuel, 1987, 1: 123.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/