Predicting glass transition temperature of polyethylene/graphene nanocomposites by molecular dynamic simulation

Yan-zhen Sheng , Hua Yang , Jun-yin Li , Miao Sun

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 788 -792.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (4) : 788 -792. DOI: 10.1007/s40242-013-2443-x
Article

Predicting glass transition temperature of polyethylene/graphene nanocomposites by molecular dynamic simulation

Author information +
History +
PDF

Abstract

The glass transition temperature of polyethylene/graphene nanocomposites was investigated by molecular dynamic simulation. The specific volumes of three systems(polyethylene, polyethylene with a small graphene sheet and two small graphene sheets) were examined as a function of temperature. We found that the glass transition temperature decreases with increasing graphene. Then the van der Waals energy changes obviously with increasing graphene and the torsion energy also plays an important role in the glass transition of polymer. The radial distribution functions of the inter-molecular carbon atoms suggest the interaction between PE and graphene weakens with increasing graphene. These indicate that graphene can prompt the motion of chain segments of polymer and decrease the glass transition temperature (T g) of polymer.

Keywords

Molecular dynamic simulation / Glass transition / Polyethylene / Graphene

Cite this article

Download citation ▾
Yan-zhen Sheng, Hua Yang, Jun-yin Li, Miao Sun. Predicting glass transition temperature of polyethylene/graphene nanocomposites by molecular dynamic simulation. Chemical Research in Chinese Universities, 2013, 29(4): 788-792 DOI:10.1007/s40242-013-2443-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angell C A. Science., 1995, 267: 1924.

[2]

Strillinger F H. Science., 1995, 267: 1935.

[3]

Fox T G, Flory P J. J. Am. Chem. Soc., 1948, 70: 2384.

[4]

Gibbs J H, di Marzio E A. J. Chem. Phys., 1958, 28: 373.

[5]

di Marzio E A, Gibbs J H. J. Polym. Sci. A., 1963, 1: 1417.

[6]

Adam G, Gibbs J H. J. Chem. Phys., 1965, 43: 139.

[7]

Schweizer K S, Saltzman E J. J. Chem. Phys., 2004, 121: 1984.

[8]

Grunina N A, Belopolskaya T V, Tsereteli G I. J. Phys. Conference Series., 2006, 40: 105.

[9]

Jochem M, Korber C H. Cryobiology., 1987, 24: 513.

[10]

Abu-Sharkh B F. Comput. Theor. Polym. Sci., 2001, 11: 29.

[11]

Javier P, Juan B. Polymer., 2002, 43: 6049.

[12]

Paul W. Polymer., 2004, 45: 3901.

[13]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science., 2004, 306: 666.

[14]

Geim A K, Novoselov K S. Nature Mater., 2007, 6: 183.

[15]

Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8: 2277.

[16]

Wang X, Zhi L, Mullen K. Nano Lett., 2007, 8: 323.

[17]

Vivekchand S R C, Rout C S, Subrahmanyam K S, Govindaraj A, Rao C N R. J. Chem. Sci., 2008, 120: 9.

[18]

McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud’homme R K, Aksay I A. Chem. Mater., 2007, 19: 4396.

[19]

Lee C, Wei X D, Kysar J W, Hone J. Science., 2008, 321: 385.

[20]

Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature., 2006, 442: 282.

[21]

Ansari S, Giannelis E P. J. Polym. Sci. Part B: Polym. Phys., 2009, 47: 888.

[22]

Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Alonso M H, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud’Homme R K, Brinson L C. Nat. Nanotechnol., 2008, 3: 327.

[23]

Lee Y R, Raghu A V, Jeong H M, Kim B K. Macromol. Chem. Phys., 2009, 210: 1247.

[24]

Wang H, Tian H W, Wang X W, Qiao L, Wang S M, Wang X L. Chem. Res. Chinese Universities., 2011, 27(5): 857.

[25]

Han D F, Shan C S, Guo L P, Niu L, Han D X. Chem. Res. Chinese Universities., 2010, 26(2): 287.

[26]

Eda G, Chhowalla M. Nano Lett., 2009, 9: 814.

[27]

Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y. J. Phys. Chem. C., 2009, 113: 9921.

[28]

Kim H, Macosko C W. Polymer., 2009, 50: 3797.

[29]

Xu J Z, Chen C, Wang Y, Tang H, Li Z M, Hsiao B S. Macromolecules., 2011, 44: 2808.

[30]

Kim H, Abdala A A, Macosko C W. Macromolecules., 2010, 43: 6515.

[31]

Wang J C, Wang X B, Xu C H, Zhang M, Shang X P. Polym. Int., 2011, 60: 816.

[32]

Mamedov A A, Kotov N A, Prato M, Guldi D M, Wicksted J P, Hirsch A. Nature Mater., 2002, 1: 190.

[33]

Velasco-Santos C, Martinez-Hernandez A L, Fisher F T, Ruoff R, Castano V M. Chem. Mater., 2003, 15: 4470.

[34]

Li D X, Liu B L, Liu Y S, Chen C L. Cryobiology., 2008, 56: 114.

[35]

Wei C Y. Nano Lett., 2002, 2: 647.

[36]

Theodorou D N, Suter U W. Macromolecules., 1985, 18: 1467.

[37]

Theodorou D N, Suter U W. Macromolecules., 1986, 19: 139.

[38]

Meirovitch H. J. Chem. Phys., 1983, 79: 502.

[39]

Sun H. J. Phys. Chem. Part B., 1998, 102: 7338.

[40]

Yang J S, Yang C L, Wang M S, Chen B D, Ma X G. Phys. Chem. Chem. Phys., 2011, 13: 15476.

[41]

Rappe A K, Goddard W A. J. Phys. Chem., 1991, 95: 3358.

[42]

Hoover W G. Phys. Rev. A., 1985, 31: 1695.

[43]

Berendsen H J C, Postma J P M, van Gunsteren W F, Dinola A, Haak J R. J. Chem. Phys., 1984, 81: 3684.

[44]

Hildebrand J H, Scott K L. The Solubility of Non-electrolytes, 3rd Ed., 1905, New York: Reinhold.

[45]

van Krevelen D W. Properties of Polymers, 3rd Ed., 1990, Amsterdam: Elsevier.

[46]

Hendra P J, Jobic H P, Holland-Moritz K J. J. Polym. Sci. Polym. Lett. Ed., 1975, 13: 365.

[47]

Lam R, Geil P H. J. Macromol. Sci. Phys. Part B., 1981, 20: 37.

[48]

Yang H, Li Z S, Qian H J, Yang Y B, Zhang X B, Sun C C. Polymer., 2004, 45: 453.

[49]

Luo Z L, Jiang Z S. Polymer., 2010, 51: 291.

[50]

Yu K Q, Li Z S, Sun J Z. Macromol. Theory Simul., 2001, 10: 624.

[51]

Allen M P, Tildesley D J. Computer Simulation of Liquids, 1987, Oxford: Clarendon Press.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/