Mutation induced structural variation in membrane proteins

Xiao-zheng Duan , Yun-qi Li , Tong-fei Shi , Qing-rong Huang , Li-jia An

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 1016 -1021.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 1016 -1021. DOI: 10.1007/s40242-013-2427-x
Article

Mutation induced structural variation in membrane proteins

Author information +
History +
PDF

Abstract

Point mutations on membrane proteins may lead to small structural variations. Prediction of such structural variations can help to further understand the related bio-activities of membrane proteins. We constructed fifteen hybrid energy functions on the basis of Chemistry at Harvard Macromolecular Mechanics(CHARMM) force field, hydrogen bonding potential and distance-scaled, finite ideal-gas reference(DFIRE)-like statistical energies, and evaluated their performance on a representative dataset of homologous membrane proteins via a newly developed all-atom replica exchange Monte Carlo algorithm. The energy function composed of CHARMM and hydrogen bonding potential has the best performance, and the original DFIRE potential shows much better performance than the DFIRE-like potentials constructed from membrane proteins. We can conclude that more membrane protein structures with high resolution are necessary for the construction of robust prediction method of mutation induced membrane protein structure variations.

Keywords

Distance-scaled, finite ideal-gas reference(DFIRE) / Hybrid function / Membrane protein / Mutation / Replica exchange Monte Carlo

Cite this article

Download citation ▾
Xiao-zheng Duan, Yun-qi Li, Tong-fei Shi, Qing-rong Huang, Li-jia An. Mutation induced structural variation in membrane proteins. Chemical Research in Chinese Universities, 2013, 29(5): 1016-1021 DOI:10.1007/s40242-013-2427-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Watts A. Nat. Rev. Drug Discov., 2005, 4: 555.

[2]

Muller D J, Wu N, Palczewski K. Pharmacol. Rev., 2008, 60: 43.

[3]

Lehnert U, Xia Y, Royce T E, Goh C S, Liu Y, Senes A, Yu H Y, Zhang Z L, Engelman D M, Gerstein M. Q. Rev. Biophys., 2004, 37: 121.

[4]

Fang J, Wei Y N. Protein Peptide Lett., 2011, 18: 601.

[5]

Gao C, Stern H A. Proteins, 2007, 68: 67.

[6]

Chen Y T, Luo Z L, Ding J D. Chem. J. Chinese Universities, 2003, 24(8): 1406.

[7]

Kmiecik S, Gront D, Kolinski A. BMC Struct. Biol., 2007, 7: 43.

[8]

Fan H, Mark A E. Protein Sci., 2004, 13: 211.

[9]

Lee M S, Olson M A. J. Chem. Theory Comput., 2007, 3: 312.

[10]

Offman M N, Fitzjohn P W, Bates P A. Bioinformatics, 2006, 22: 1838.

[11]

Lu H, Skolnick J. Biopolymers, 2003, 70: 575.

[12]

Guerois R, Nielsen J E, Serrano L. J. Mol. Biol., 2002, 320: 369.

[13]

Mendes J, Guerois R, Serrano L. Curr. Opin. Struc. Biol., 2002, 12: 441.

[14]

Prevost M, Wodak S J, Tidor B, Karplus M. Proc. Natl. Acad. Sci. USA, 1991, 88: 10880.

[15]

Jorgensen W L, Maxwell D S, TiradoRives J. J. Am. Chem. Soc., 1996, 118: 11225.

[16]

Pitera J W, Kollman P A. Proteins, 2000, 41: 385.

[17]

MacKerell A D, Bashford D, Bellott M, Dunbrack R L, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher W E, Roux B, Schlenkrich M, Smith J C, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. J. Phys. Chem. B, 1998, 102: 3586.

[18]

Yuan X H, Wang Y C, Qu Z Y, Ren J Y, Wang J F, Guo Y Y, Wang Y X, Hua D, Wu X M, Yang Z W, Gao H. Chem. J. Chinese Universities, 2011, 32(8): 1838.

[19]

Wroblewska L, Jagielska A, Skolnick J. Biophys. J., 2008, 94: 3227.

[20]

Jagielska A, Wroblewska L, Skolnick J. Proc. Natl. Acad. Sci. USA, 2008, 105: 8268.

[21]

Summa C M, Levitt M. Proc. Natl. Acad. Sci. USA, 2007, 104: 3177.

[22]

Zhou H Y, Zhou Y Q. Protein Sci., 2002, 11: 2714.

[23]

Samudrala R, Moult J. J. Mol. Biol., 1998, 275: 895.

[24]

Zhang C, Liu S, Zhou Y. Protein Sci., 2004, 13: 391.

[25]

Li Y Q, Fang J W. Biochem. Biophys. Res. Commun., 2010, 396: 736.

[26]

Zhao H Y, Yang Y D, Zhou Y Q. Bioinformatics, 2010, 26: 1857.

[27]

Kang S, Chen G, Xiao G. Protein Eng. Des. Sel., 2009, 22: 75.

[28]

Fullone M R, Paiardini A, Gross D C, Lu S E, Fiore A, Grgurina I. Biochem. Biophys. Res. Commun., 2007, 364: 201.

[29]

Hoppe C, Schomburg D. Protein Sci., 2005, 14: 2682.

[30]

Parthiban V, Gromiha M M, Hoppe C, Schomburg D. Proteins, 2007, 66: 41.

[31]

Zhang Y, DeVries M E, Skolnick J. Plos Comput. Biol., 2006, 2: 88.

[32]

Schueler-Furman O, Wang C, Bradley P, Misura K, Baker D. Science, 2005, 310: 638.

[33]

Spassov V Z, Yan L, Szalma S. J. Phys. Chem. B, 2002, 106: 8726.

[34]

Forrest L R, Woolf T B. Proteins, 2003, 52: 492.

[35]

Kelm S, Shi J Y, Deane C M. Bioinformatics, 2010, 26: 2833.

[36]

Cai Y D, Chou K C. Biochem. Biophys. Res. Commun., 2003, 305: 407.

[37]

Cai Y D, Doig A J. Bioinformatics, 2004, 20: 1292.

[38]

Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. J. Mol. Biol., 1990, 215: 403.

[39]

Kabsch W, Sander C. Biopolymers, 1983, 22: 2577.

[40]

Li Y Q, Zhang Y. Proteins, 2009, 76: 665.

[41]

Zhang Y, Kihara D, Skolnick J. Proteins, 2002, 48: 192.

[42]

Sugita Y, Okamoto Y. Chem. Phys. Lett., 1999, 314: 141.

[43]

Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. J. Chem. Phys., 1953, 21: 1087.

[44]

da Silva R A, Degreve L, Caliri A. Biophys. J., 2004, 87: 1567.

[45]

Li Y Q, Roy A, Zhang Y. PloS One, 2009, 4: e6701.

[46]

Shortle D, Simons K T, Baker D. Proc. Natl. Acad. Sci. USA, 1998, 95: 11158.

[47]

Forrest L R, Honig B. Protein, 2005, 61: 296.

[48]

Koch O, Bocola M, Klebe G. Proteins, 2005, 61: 310.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/