Prediction of enhancement effect of nitroimidazoles on irradiation by gene expression programming

Wei Long , Xiao-dong Zhang , Hao Wang , Xiu Shen , Hong-zong Si , Sai-jun Fan , Ze-wei Zhou , Pei-xun Liu

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 519 -525.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 519 -525. DOI: 10.1007/s40242-013-2422-2
Article

Prediction of enhancement effect of nitroimidazoles on irradiation by gene expression programming

Author information +
History +
PDF

Abstract

A novel machine learning method, gene expression programming(GEP), was employed to build quatitative structure-activity relationship(QSAR) models for predicting the enhancement effect of nitroimidazole compounds on irradiation. The models were based on descriptors which were calculated from the molecular structures. Four descriptors were selected from the pool of descriptors by best multiple linear regression(BMLR) method. After that, three regression methods, multiple linear regression(MLR), support vector machine(SVM) and GEP, were used to build QSAR models. Compared to MLR and SVM, GEP produced a better model with the square of correlation coefficient(R 2), 0.9203 and 0.9014, and the root mean square error(RMSE), 0.6187 and 0.6875, for training set and test set, respectively. The results show that the GEP model has better predictive ability and more reliable than the MLR and SVM models. This indicates that GEP is a promising method on relevant researches in radiation area.

Keywords

Nitroimidazole / Irradiation enhancement effect / Gene expression programming

Cite this article

Download citation ▾
Wei Long, Xiao-dong Zhang, Hao Wang, Xiu Shen, Hong-zong Si, Sai-jun Fan, Ze-wei Zhou, Pei-xun Liu. Prediction of enhancement effect of nitroimidazoles on irradiation by gene expression programming. Chemical Research in Chinese Universities, 2013, 29(3): 519-525 DOI:10.1007/s40242-013-2422-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kvols L K. J. Nucl. Med., 2005, 46(Suppl.1): 187S.

[2]

Sawai Y, Murata H, Horii M, Koto K, Matsui T, Horie N, Tsuji Y, Ashihara E, Maekawa T, Kubo T, Fushiki S. Oncol. Rep., 2013, 29: 941.

[3]

Abdi K, Khalaj A, Ostad S N, Khoshayand M R. Dura, 2012, 20: 3.

[4]

Zhang X, Wu D, Shen X, Chen J, Sun Y, Liu P, Liang X. Biomaterials, 2012, 33: 6408.

[5]

Adams G E, Clarke E D, Flockhart I R, Jacobs R S, Sehmi D S, Stratford I J, Wardman P, Watts M E, Parrick J, Wallace R G, Smithen C E. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1979, 35: 133.

[6]

Adams G E, Clarke E D, Gray P, Jacobs R S, Stratford I J, Wardman P, Watts M E, Parrick J, Wallace R G, Smithen C E. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1979, 35: 151.

[7]

Adams G E, Ahmed I, Clarke E D, O’Neill P, Parrick J, Stratford I J, Wallace R G, Wardman P, Watts M E. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1980, 38: 613.

[8]

Butler K, Howes H L, Lynch J E, Pirie D K. J. Med. Chem., 1967, 10: 891.

[9]

Lancini G C, Arioli V, Lazzari E, Bellani P. J. Med. Chem., 1969, 12: 775.

[10]

Hansch C, Clayton J M. J. Pharm. Sci., 1973, 62: 1.

[11]

Adams G E, Flockhart I R, Smithen C E, Stratford I J, Wardman P, Watts M E. Radiat. Res., 1976, 67: 9.

[12]

Zhu A Q, Xu S J, Huang J M, Luo Z Y. Int. J. Radiat. Biol., 1989, 56: 893.

[13]

Ferreira C. Complex Systems, 2001, 13: 87.

[14]

Ozlem T, Keskin M E. Journal of Applied Sciences, 2005, 5: 508.

[15]

Baykasoglu A, Dereli T, Tanis S. Cement and Concrete Research, 2004, 34: 2083.

[16]

Colak O, Kurbanoglu C, Kayacan M C. Materials & Design, 2007, 28: 657.

[17]

Si H Z, Wang T, Zhang K J, Hu Z D, Fan B T. Bioorg. Med. Chem., 2006, 14: 4834.

[18]

Si H, Wang T, Zhang K, Duan Y B, Yuan S, Fu A, Hu Z. Anal. Chim. Acta, 2007, 591: 255.

[19]

Si H Z, Zhang K J, Hu Z D, Fan B T. QSAR & Combinatotial Science, 2007, 26: 41.

[20]

Si H, Yuan S, Zhang K, Fu A, Duan Y B, Hu Z. Chemometrics and Intelligent Laboratory Systems, 2008, 90: 15.

[21]

Luan F, Si H Z, Liu H T, Wen Y Y, Zhang X Y. SAR QSAR Environ. Res., 2008, 19: 465.

[22]

Si H, Lian N, Yuan S, Fu A, Duan Y B, Zhang K, Yao X. Eur. J. Med. Chem., 2009, 44: 4044.

[23]

CODESSA, Comprehensive Descriptors for Structural and Statistical Analysis, Version 2.7.10. Semichem, 2007

[24]

Zheng X L, Jin Y Z, Shen Y. Drugs for Oncotherapy Sensitization, 2002, Shanghai: Shanghai Scientific and Technological Literature Publishing House.

[25]

HyperChem 7.0, Hypercube, 2002

[26]

Stewart J P P. MOPAC 6.0, Quantum Chemistry Program Exchange, QCPE No.455, 1989, Bloomington: Indiana University.

[27]

Katritzky A. R., Lobanov V. S., Karelson M., Comprehensive Descriptors for Structural and Statistical Analysis, Reference Manual, Version 2.7.10.

[28]

Cortes C, Vapnik V. Machine Learning, 1995, 20: 273.

[29]

Katritzky A R, Kulshyn O V, Stoyanova-Slavova I, Dobchev D A, Kuanar M, Fara D C, Karelson M. Bioorg. Med. Chem., 2006, 14: 2333.

[30]

Katritzky A R, Dobchev D A, Tulp I, Karelson M, Carlson D A. Bioorg. Med. Chem. Lett., 2006, 16: 2306.

[31]

Katritzky A R, Pacureanu L M, Dobchev D A, Fara D C, Duchowicz P R, Karelson M. Bioorg. Med. Chem., 2006, 14: 4987.

[32]

Automatic Problem Solver(APS), http://www.gepsoft.com/gepsoft

[33]

Liu R, Ni M, Lin N. Journal of Radiation Research and Radiation Processing, 1984, 3: 18.

[34]

Zefirov N S, Kirpichenok M A, Izmailov F F, Trofimov M I. Dokl. Akad. Nauk SSSR, 1987, 296: 883.

[35]

Kirpichenok M A, Zefirov N S. Zh. Org. Khim., 1987, 23: 673.

[36]

Strouf O. Chemical Pattern Recognition, 1986, New York: Wiley.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/