Self-assembled synthesis of 3D CuO flocculus-like nanosheet-based hierarchical nanostructures

Yong-kui Yin , Yan-Li Xu , Ying Li , Feng-yun Ren , Shuang-jing Li , Ge Jin , Miao-jing Li , Xin-yu Cui

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 379 -383.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 379 -383. DOI: 10.1007/s40242-013-2413-3
Articles

Self-assembled synthesis of 3D CuO flocculus-like nanosheet-based hierarchical nanostructures

Author information +
History +
PDF

Abstract

A simple, surfactant-free, and environmentally benign method has been developed to synthesize a novel 3D flocculus-like CuO hierarchical nanostructure self-assembled with 2D nanosheet as building blocks. Detailed proofs demonstrate that the overall synthetic process underwent the dehydration and re-crystallization of precursor Cu(OH)2 nanowires, and the subsequent two-step oriented attachment. In addition, 3D butterfly-like and flower-like CuO nanostructures consisted of 2D nanosheets could be obtained by adjusting the concentration of NaOH(c NaOH) in the solution. c NaOH played a key role in tailoring the thickness of the nanosheets and changing the morphology of the product. This report may be helpful to constructing fine-tune hierarchical CuO nanostructures under basic conditions.

Keywords

Hierarchical nanostructure / Self assembly / Oriented attachment / CuO

Cite this article

Download citation ▾
Yong-kui Yin, Yan-Li Xu, Ying Li, Feng-yun Ren, Shuang-jing Li, Ge Jin, Miao-jing Li, Xin-yu Cui. Self-assembled synthesis of 3D CuO flocculus-like nanosheet-based hierarchical nanostructures. Chemical Research in Chinese Universities, 2013, 29(2): 379-383 DOI:10.1007/s40242-013-2413-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dinsmore A. D., Hsu M. F., Nikolaides M. G., Marquez M., Bausch A. R., Weitz D. A. Science, 2002, 298: 1006.

[2]

Yang H. G., Zeng H. C. Angew. Chem. Int. Ed., 2004, 43: 5930.

[3]

Lieber C. M. Solid State Commun., 1998, 107: 607.

[4]

Alivisatos A. P. Science, 1996, 271: 933.

[5]

Pan Z. W., Dai Z. R., Wang Z. L. Science, 2001, 291: 1947.

[6]

Li D., McCann J. T., Xia Y. N. Small, 2005, 1: 83.

[7]

Xia Y. N., Yang P. D., Sun Y. G., Wu Y. Y., Mayers B., Gates B., Yin Y. D., Kim F., Yan H. Q. Adv. Mater., 2003, 15: 353.

[8]

Fang X. S., Ye C. H., Zhang L. D., Xie T. Adv. Mater., 2005, 17: 1661.

[9]

Penn R. L., Banfield J. F. Geochim. Cosmochim. Acta, 1999, 63: 1549.

[10]

Banfield J. F., Welch S. A., Zhang H., Penn R. L. Science, 2000, 289: 751.

[11]

Pacholski C., Kornowski A., Weller H. Angew. Chem. Int. Ed., 2002, 41: 1188.

[12]

Zhang D. F., Sun L. D., Yin J. L., Yan C. H., Wang R. M. J. Phys. Chem. B, 2005, 109: 8786.

[13]

Yu H. Y., Joo J., Park H. M., Baik S., Kim Y. W., Kim S. C., Hyeon T. J. Am. Chem. Soc., 2005, 127: 5662.

[14]

Chemseddine A., Moritz T. Eur. J. Inorg. Chem., 1999, 2: 235.

[15]

Cho K. S., Talapin D. V., Gaschler W., Murray C. B. J. Am. Chem. Soc., 2005, 127: 7140.

[16]

Rafea M. A., Roushdy N. J. Phys. D: Appl. Phys., 2009, 42: 015413.

[17]

Akhavan O., Tohidi H., Moshfegh A. Z. Thin Solid Films, 2009, 517: 6700.

[18]

Oral A. Y., Mensur E., Aslan M. H., Basaran E. Mater. Chem. Phys., 2004, 83: 140.

[19]

Pierson J. F., Thobor-Kecka A., Billard A. Appl. Surf. Sci., 2003, 210: 359.

[20]

Richardson T. J., Slack J. L., Rubin M. D. Electrochim. Acta, 2001, 46: 2281.

[21]

Morgan D. V., Howes M. J. Phys. Status Solidi A, 1974, 21: 191.

[22]

Wijesundera R. P. Semicond. Sci. Technol., 2010, 25: 045015.

[23]

Anandan S., Wen X., Yang S. Mater. Chem. Phys., 2005, 93: 35.

[24]

Zhou M., Gao Y., Wang B., Rozynek Z., Fossum J. O. Eur. J. Inorg. Chem., 2010, 5: 729.

[25]

Teng F., Yao W., Zheng Y., Ma Y., Teng Y., Xu T., Liang S., Zhu Y. Sens. Actuators B, 2008, 134: 761.

[26]

Batista A. P. L., Carvalho H. W. P., Luz G. H. P., Martins P. F. Q., Goncalves M., Oliveira L. C. A. Environ. Chem. Lett., 2010, 8: 63.

[27]

Akhavan O., Ghaderi E. Surf. Coat. Technol., 2010, 205: 219.

[28]

Chowdhuri A., Sharma P., Gupta V., Sreenivas K., Rao K. V. J. Appl. Phys., 2002, 92: 2172.

[29]

Zhu Y. W., Yu T., Cheong F. C., Xu X. J., Lim C. T., Tan V. B. C., Thong J. T. L., Sow C. H. Nanotechnology, 2005, 16: 88.

[30]

Liu Y., Zhong L., Peng Z., Song Y., Chen W. J. Mater. Sci., 2010, 45: 3791.

[31]

Xiang J. Y., Tu J. P., Zhang L., Zhou Y., Wang X. L., Shi S. J. J. Power Sources, 2010, 195: 313.

[32]

Comanac A., de Medici L., Capone M., Millis A. J. Nat. Phys., 2008, 4: 287.

[33]

Tarascon J. M., Armand M. Nature, 2001, 414: 359.

[34]

Yamada A., Iwane N., Harada Y., Nishimura S., Koyama Y., Tanaka I. Adv. Mater., 2010, 22: 3583.

[35]

Lee K. T., Cho J. Nano Today, 2011, 6: 28.

[36]

Cheng F., Liang J., Tao Z., Chen J. Adv. Mater., 2011, 23: 1695.

[37]

Hu L., Peng Q., Li Y. J. Am. Chem. Soc., 2008, 130: 16136.

[38]

Shi Y., Guo B., Corr S. A., Shi Q., Hu Y. S., Heier K. R., Chen L., Seshadri R., Stucky G. D. Nano Lett., 2009, 9: 4215.

[39]

Wang X., Wu X. L., Guo Y. G., Zhong Y., Cao X., Ma Y., Yao J. Adv. Funct. Mater., 2010, 20: 1680.

[40]

Zhu J. X., Zhu T., Zhou X. Z., Zhang Y. Y., Lou X. W., Chen X. D., Zhang H., Hng H. H., Yan Q. Y. Nanoscale, 2011, 3: 1084.

[41]

Zhu J., Lu Z., Oo M. O., Hng H. H., Ma J., Zhang H., Yan Q. Y. J. Mater. Chem., 2011, 21: 12770.

[42]

Song M. J., Hwang S. W., Whang D. M., Talanta, 2010, 1648.

[43]

Yu Y. L., Zhang J. Y. Mater. Lett., 2009, 63: 1840.

[44]

Vaseem M., Umar A., Kim S. H., Hahn Y. B. Mater. Lett., 2008, 62: 1659.

[45]

Zhang Z. P., Sun H. P., Shao X. Q., Li D. F., Yu H. D., Han M. Y. Adv. Mater., 2005, 17: 42.

[46]

Liu J. P., Huang X. T., Li Y. Y., Sulieman K. M., He X., Sun F. L. Cryst. Growth. Des., 2006, 6: 1690.

[47]

Yin Y. K., Yang F. H., Yang Y., Gan Z. B., Zhou B. B., Li X. X. Superlattices Microstruct., 2011, 49: 599.

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/