Inhibition of CK2 Activity by TCDD via binding to ATP-competitive binding site of catalytic subunit: Insight from computational studies

Xian-jin Xu , Salvatore Cannistraro , Anna-rita Bizzarri , Yi Zeng , Wei-zu Chen , Cun-xin Wang

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 299 -306.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 299 -306. DOI: 10.1007/s40242-013-2384-4
Articles

Inhibition of CK2 Activity by TCDD via binding to ATP-competitive binding site of catalytic subunit: Insight from computational studies

Author information +
History +
PDF

Abstract

Alternative mechanisms of toxic effects induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD), instead of the binding to aryl hydrocarbon receptor(AhR), have been taken into consideration. It has been recently shown that TCDD reduces rapidly the activity of CK2(casein kinase II) both in vivo and in vitro. It is found that TCDD has high molecular similarities to the known inhibitors of CK2 catalytic subunit(CK2α). This suggests that TCDD could also be an ATP-competitive inhibitor of CK2α. In this work, docking TCDD to CK2 was carried out based on the two structures of CK2α from maize and human, respectively. The binding free energies of the predicted CK2α-TCDD complexes estimated by the molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) method are from −85.1 kJ/mol to −114.3 kJ/mol for maize and are from −96.1 kJ/mol to −118.2 kJ/mol for human, which are comparable to those estimated for the known inhibitor and also ATP with CK2α. The energetic analysis also reveals that the van der Waals interaction is the dominant contribution to the binding free energy. These results are also useful for designing new drugs for a target of overexpressing CK2 in cancers.

Keywords

Casein kinase II / Dioxin / Inhibitor / Modeling / Binding free energy

Cite this article

Download citation ▾
Xian-jin Xu, Salvatore Cannistraro, Anna-rita Bizzarri, Yi Zeng, Wei-zu Chen, Cun-xin Wang. Inhibition of CK2 Activity by TCDD via binding to ATP-competitive binding site of catalytic subunit: Insight from computational studies. Chemical Research in Chinese Universities, 2013, 29(2): 299-306 DOI:10.1007/s40242-013-2384-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pitot H. C., Goldsworthy T., Campbell H. A., Poland A. Cancer Res., 1980, 40: 3616.

[2]

Poland A., Knutson J. C. Annu. Rev. Pharmacol. Toxicol., 1982, 22: 517.

[3]

Mandal P. K. J. Comp. Physiol. B, 2005, 175: 221.

[4]

Huff J., Lucier G., Tritscher A. Annu. Rev. Pharmacol. Toxicol., 1994, 34: 343.

[5]

Kamath A. B., Xu H., Nagarkatti P. S., Nagarkatti M. Toxicol. Appl. Pharmacol., 1997, 142: 367.

[6]

Pryputniewicz S. J., Nagarkatti M., Nagarkatti P. S. Toxicology, 1998, 129: 211.

[7]

Lai Z. W., Fiore N. C., Gasiewicz T. A., Silverstone A. E. Toxicol. Appl. Pharm., 1998, 149: 167.

[8]

Fernandez-Salguero P. M., Hilbert D. M., Rudikoff S., Ward J. M., Gonzalez F. J. Toxicol. Appl. Pharmacol., 1996, 140: 173.

[9]

Dietrich C., Kaina B. Carcinogenesis, 2010, 31: 1319.

[10]

Hankinson O. Annu. Rev. Pharmacol. Toxicol., 1995, 35: 307.

[11]

Enan E., Matsumura F. Biochem. Pharmacol., 1995, 50: 1199.

[12]

Enan E., El-Sabeawy F., Scott M., Overstreet J., Lasley B. Toxicol. Appl. Pharmacol., 1998, 151: 283.

[13]

Ashida H., Nagy S., Matsumura F. Biochem. Pharmacol., 2000, 59: 741.

[14]

Pinna L. A., Allende J. E. Cell Mol. Life Sci., 2009, 66: 1795.

[15]

St-Denis N. A., Litchfield D. W. Cell Mol. Life Sci., 2009, 66: 1817.

[16]

Filhol O., Cochet C. Cell Mol. Life Sci., 2009, 66: 1830.

[17]

Dominguez I., Sonenshein G. E., Seldin D. C. Cell Mol. Life Sci., 2009, 66: 1850.

[18]

Trembley J. H., Wang G., Unger G., Slaton J., Ahmed K. Cell Mol. Life Sci., 2009, 66: 1858.

[19]

Niefind K., Raaf J., Issinger O. G. Cell Mol. Life Sci., 2009, 66: 1800.

[20]

Kramerov A. A., Ljubimov A. V. Exp. Eye. Res., 2012, 101: 111.

[21]

Guerra B., Issinger O. G. Curr. Med. Chem., 2008, 15: 1870.

[22]

Battistutta R. Cell Mol. Life Sci., 2009, 66: 1868.

[23]

Srinivasan J., Cheatham T. E., Cieplak P., Kollman P. A., Case D. A. J. Am. Chem. Soc., 1998, 120: 9401.

[24]

Massova I., Kollman P. A. J. Am. Chem. Soc., 1999, 121: 8133.

[25]

Chong L. T., Duan Y., Wang L., Massova I., Kollman P. A. P. Natl. Acad. Sci. USA, 1999, 96: 14330.

[26]

Massova I., Kollman P. A. Perspect. Drug Discov., 2000, 18: 113.

[27]

Hou T., Wang J., Li Y., Wang W. J. Chem. Inf. Model., 2011, 51: 69.

[28]

Hendrickson J. B. Science, 1991, 252: 1189.

[29]

Martin Y. C., Kofron J. L., Traphagen L. M. J. Med. Chem., 2002, 45: 4350.

[30]

Bender A., Glen R. C. Org. Biomol. Chem., 2004, 2: 3204.

[31]

Maldonado A. G., Doucet J. P., Petitjean M., Fan B. T. Mol. Divers., 2006, 10: 39.

[32]

Hu S. Q., Mi S. Q., Jia X. L., Guo A. L., Chen S. H., Zhang J., Liu X. Y. Chem. J. Chinese Universities, 2011, 32(10): 2402.

[33]

Zhu J., Sheng C. Q., Zhang M., Song Y. L., Chen J., Yu J. X., Yao J. Z., Miao Z. Y., Zhang W. N. Chem. J. Chinese Universities, 2006, 27(2): 287.

[34]

Wang J. G., Fu X. L., Wang Y. M., Ma Y., Li Z. M., Zhang Z. X. Chem. J. Chinese Universities, 2003, 24(11): 2010.

[35]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision C02, 2004, Wallingford CT: Gaussian Inc.

[36]

Vainio M. J., Puranen J. S., Johnson M. S. J. Chem. Inf. Model., 2009, 49: 492.

[37]

Battistutta R., De Moliner E., Sarno S., Zanotti G., Pinna L. A. Protein Sci., 2001, 10: 2200.

[38]

Raaf J., Klopffleisch K., Issinger O. G., Niefind K. J. Mol. Biol., 2008, 377: 1.

[39]

Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J. J. Comput. Chem., 2009, 30: 2785.

[40]

Gasteiger J., Marsili M. Tetrahedron, 1980, 36: 3219.

[41]

Hess B., Kutzner C., van der Spoel D., Lindahl E. J. Chem. Theory Comput., 2008, 4: 435.

[42]

van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C. J. Comput. Chem., 2005, 26: 1701.

[43]

Schuttelkopf A. W., van Aalten D. M. F. Acta Crystallogr. D, 2004, 60: 1355.

[44]

Lemkul J. A., Allen W. J., Bevan D. R. J. Chem. Inf. Model., 2010, 50: 2221.

[45]

Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M. J. Comput. Chem., 1997, 18: 1463.

[46]

Bussi G., Donadio D., Parrinello M. J. Chem. Phys., 2007, 126: 014101.

[47]

Parrinello M., Rahman A. J. Appl. Phys., 1981, 52: 7182.

[48]

Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G. J. Chem. Phys., 1995, 103: 8577.

[49]

Berendsen H. J. C., Grigera J. R., Straatsma T. P. J. Phys. Chem., 1987, 91: 6269.

[50]

Humphrey W., Dalke A., Schulten K. J. Mol. Graph. Model., 1996, 14: 33.

[51]

Wang J. M., Hou T. J., Xu X. J. Curr. Comput. Aided Drug Des., 2006, 2: 287.

[52]

Kollman P. A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W. Accounts Chem. Res., 2000, 33: 889.

[53]

Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A. P. Natl. Acad. Sci. USA, 2001, 98: 10037.

[54]

Sitkoff D., Sharp K. A., Honig B. J. Phys. Chem., 1994, 98: 1978.

[55]

Andricioaei I., Karplus M. J. Chem. Phys., 2001, 115: 6289.

[56]

Sousa S. F., Fernandes P. A., Ramos M. J. Proteins, 2006, 65: 15.

[57]

Archontis G., Simonson T. J. Am. Chem. Soc., 2001, 123: 11047.

[58]

Basdevant N., Weinstein H., Ceruso M. J. Am. Chem. Soc., 2006, 128: 12766.

[59]

Santini S., Bizzarri A. R., Cannistraro S. J. Mol. Recognit., 2011, 24: 1043.

[60]

Swanson J. M., Henchman R. H., McCammon J. A. Biophys. J., 2004, 86: 67.

[61]

Cozza G., Mazzorana M., Papinutto E., Bain J., Elliott M., Di Maira G., Gianoncelli A., Pagano M. A., Sarno S., Ruzzene M., Battistutta R., Meggio F., Moro S., Zagotto G., Pinna L. A. Biochem. J., 2009, 421: 387.

[62]

Niefind K., Putter M., Guerra B., Issinger O. G., Schomburg D. Nat. Struct. Biol., 1999, 6: 1100.

[63]

Wallace A. C., Laskowski R. A., Thornton J. M. Protein Eng., 1995, 8: 127.

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/