Preparation and magnetic properties of submicron CrO2 thin film on poly-crystal TiO2 film

Ju-jun Yuan , Ge-hui Wen , Qiang Zhao , Yin-bo Fan , Cai-ping Zhang , Xian-ke Zhang , Hua-jun Yu , Ying-mao Xie

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 600 -602.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 600 -602. DOI: 10.1007/s40242-013-2382-6
Article

Preparation and magnetic properties of submicron CrO2 thin film on poly-crystal TiO2 film

Author information +
History +
PDF

Abstract

The submicron chromium dioxide(CrO2) thin film was fabricated on a poly-crystal titania(TiO2) film using Si wafers as substrates by atmospheric pressure chemical vapor deposition(CVD) method. X-Ray diffraction patterns show that the CrO2 films were pure rutile structure. Scanning electron microscopy(SEM) images indicate that the CrO2 films consisted of submicron grains with a grain size of 250–750 nm. The magnetic researches reveal that the magnetic easy axis is parallel to the films, and at room temperature, the CrO2 films show linear magnetoresistance.

Keywords

CrO2 film / TiO2 film / Chemical vapor deposition(CVD) / Magnetic property / Half-metal ferromagnet

Cite this article

Download citation ▾
Ju-jun Yuan, Ge-hui Wen, Qiang Zhao, Yin-bo Fan, Cai-ping Zhang, Xian-ke Zhang, Hua-jun Yu, Ying-mao Xie. Preparation and magnetic properties of submicron CrO2 thin film on poly-crystal TiO2 film. Chemical Research in Chinese Universities, 2013, 29(3): 600-602 DOI:10.1007/s40242-013-2382-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miao G, Xiao G, Gupta A. Phys. Rev. B, 2005, 71: 094418.

[2]

Li H B, Xu S C, Liu M, Feng M, Yin J Z. Chem. Res. Chinese Universities, 2010, 26(3): 344.

[3]

Cheng Y H, Li L Y, Wang W H, Luo X G, Liu H, Zheng R K. J. Appl. Phys., 2011, 109: 073905.

[4]

Cao J G, Li J J, Duan H F, Lin Y J. Chem. Res. Chinese Universities, 2012, 28(4): 590.

[5]

Kämper K T, Schmitt W, Gntherodt G, Gambino R J, Ruf R. Phys. Rev. Lett., 1987, 59: 2788.

[6]

Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupt A. Phys. Rev. Lett., 2001, 86: 5585.

[7]

Soulen R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D. Science, 1998, 282: 85.

[8]

Jeng H T, Guo G Y. J. Appl. Phys., 2002, 92: 951.

[9]

Son J Y, Cho J H. Nanotechnology, 2007, 18: 165503.

[10]

Rameev B Z, Yilgin R, Aktas B, Gupta A, Tagirov L R. Microelectron. Eng., 2003, 69: 336.

[11]

Stampe P A, Kennedy R J, Watts S M, Molnar S V. J. Appl. Phys., 2001, 89: 7696.

[12]

Rüdiger U, Rabe M, Samm K, Özyilmaz B, Pommer J, Fraune M, Güntherodt G, Senz S, Hesse D. J. Appl. Phys., 2001, 89: 7699.

[13]

Doucettea L D, Christensenb T M, Desistoa W J, Lad R J. J. Cryst. Growth, 2006, 290: 653.

[14]

Zhao Q, Yuan J J, Wen G H, Zou G T. J. Magn. Magn. Mater., 2008, 320: 2356.

[15]

Chen Y P, Ding K, Yang L, Xie B, Song F Q, Wan J G, Wang G H, Han M. Appl. Phys. Lett., 2008, 92: 173112.

[16]

Li X W, Gupta A, Xiao G. Appl. Phys. Lett., 1999, 5: 713.

[17]

Desisto W J, Broussard P R, Ambrose T F, Nadgorny B E, Osofsky M S. Appl. Phys. Lett., 2000, 76: 3789.

[18]

Bullen H A, Garrett S J. Chem. Mater., 2002, 14: 243.

[19]

Dho J, Kim D H, Kwon D, Kim B G. J. Appl. Phys., 2008, 104: 063528.

[20]

Huang X, Yan X H, Zhu Z H, Yang Y R, Guo Y D. J. Appl. Phys., 2011, 109: 064319.

[21]

Babelon P, Dequiedt A S, Mostefa-Sba H, Bourgeois S, Sibillot P, Sacilotti M. Thin Solid Films, 1998, 322: 63.

[22]

Gauthier V, Bourgeois S, Sibillot P, Maglione M, Sacilotti M. Thin Solid Films, 1999, 340: 175.

[23]

König C, Fonin M, Laufenberg M, Biehler A, Bührer W, Kläui M, Rüdiger U, Güntherodt G. Phys. Rev. B, 2007, 75: 144428.

[24]

Korotin M A, Anisimov V I, Khomskii D I, Sawatzky G A. Phys. Rev. Lett., 1998, 80: 4305.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/