Insight into substrate preference of two chimeric esterases by combining experiment and molecular simulation

Xiao-li Zhou , Wei-wei Han , Bai-song Zheng , Yan Feng

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 533 -537.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 533 -537. DOI: 10.1007/s40242-013-2353-y
Article

Insight into substrate preference of two chimeric esterases by combining experiment and molecular simulation

Author information +
History +
PDF

Abstract

Better understanding of the relationship between the substrate preference and structural module of esterases is helpful to novel enzyme development. For this purpose, two chimeric esterases AAM7 and PAR, constructed via domain swapping between two ancient thermophilic esterases, were investigated on their molecular simulation(including homology modeling, substrates docking and substrate binding affinity validation) and enzymatic assay(specific activities and activation energies calculating). Our results indicate that the factors contributing to the substrate preference of many enzymes especially the broad-specificity enzymes like esterases are multiple and complicated, the substrate binding domains or binding pockets are important but not the only factor for substrate preference.

Keywords

Substrate preference / Docking / Chimeric enzyme / Thermophilic esterase

Cite this article

Download citation ▾
Xiao-li Zhou, Wei-wei Han, Bai-song Zheng, Yan Feng. Insight into substrate preference of two chimeric esterases by combining experiment and molecular simulation. Chemical Research in Chinese Universities, 2013, 29(3): 533-537 DOI:10.1007/s40242-013-2353-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bornscheuer U T. Curr. Opin. Biotechnol., 2002, 13: 543.

[2]

Panda T, Gowrishankar B S. Appl. Micorbiol. Biotechnol., 2005, 67: 160.

[3]

Osterlund T. Eur. J. Biochem., 2001, 268: 1899.

[4]

Bornscheuer U T, Bessler C, Srinivas R, Krishna S H. Trends Biotechnol., 2002, 20: 433.

[5]

Nardini M, Dijkstra B W. Curr. Opin. Struct. Biol., 1999, 9: 732.

[6]

Holmquist M. Curr. Protein Pept. Sci., 2000, 1: 209.

[7]

Manco G, Giosuè E, D’Auria S, Herman P, Carrea G, Rossi M. Arch. Biochem. Biophys., 2000, 373: 182.

[8]

Gao R, Feng Y, Ishikawa K, Ishida H, Ando S, Kosugi Y, Cao S. J. Mol. Catal. B, Enzym., 2003, 24: 1.

[9]

de Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, Rossi M, Pedone C. J. Mol. Biol., 2001, 314: 507.

[10]

Bartlam M, Wang G, Yang H, Gao R, Zhao X, Xie G, Cao S, Feng Y, Rao Z. Structure, 2004, 12: 1481.

[11]

Tao J, Zhao B, Tian X, Zheng L, Cao S. Chem. Res. Chinese Universities, 2010, 26(5): 816.

[12]

Thompson J D, Higgins D G, Gibson T J. Nucleic Acids Res., 1994, 22: 4673.

[13]

DeLano W L. The PyMOL Molecular Graphics System (Version 1.5.0.4 Schrodinger, LLC), 2002.

[14]

Eswar N, Webb B, Marti-Renom M A, Madhusudhan M S, Eramian D, Shen M Y, Pieper U, Sali A. Curr. Protoc. Protein Sci., Chapter 2, Unit 2.9, 2007, New York: John Wiley & Sons, Inc.

[15]

Laskowski R A, MacArthur M W, Moss D S, Thornton J M. J. App. Cryst., 1993, 26: 283.

[16]

Wang Y, Wang Y, Han W, Feng Y. Chem. Res. Chinese Universities, 2012, 28(4): 707.

[17]

Huey R, Morris G M, Olson A J, Goodsell D S. J. Comput. Chem., 2007, 28: 1145.

[18]

Morris G M, Huey R, Lindstrom W, Sanner M F, Belew R K, Goodsell D S, Olson A J. J. Comput. Chem., 2009, 30: 2785.

[19]

Morris G M, Goodsell D S, Halliday R S, Huey R, Hart W E, Belew R K, Olson A J. J. Comput. Chem., 1998, 19: 1639.

[20]

Yang G, Bai A, Gao L, Feng Y. Biochim. Biophys. Acta, 2009, 1794: 94.

[21]

Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. Nucleic Acids Res., 2006, 34: W116.

[22]

Zhou X, Wang H, Zhang Y, Gao L, Feng Y. Acta Biochim. Biophys. Sin., 2012, 44: 965.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/