Synthesis and biological activity of novel 1-substituted phenyl(glycosyl)-4-{4-[4,6-dimethoxy)pyrimidin-2-yl] piperazin-1-yl}methyl-1H-1,2,3-triazoles
Ming-zhen Mao , Yu-xin Li , Yun-yun Zhou , Xiao-ping Yang , Xiu-lan Zhang , Xiao Zhang , Zheng-ming Li
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 900 -905.
Synthesis and biological activity of novel 1-substituted phenyl(glycosyl)-4-{4-[4,6-dimethoxy)pyrimidin-2-yl] piperazin-1-yl}methyl-1H-1,2,3-triazoles
A series of novel 1-substituted phenyl or glycosyl 1,2,3-triazoles was designed and synthesized by azide-alkyne 1,3-dipolar cycloaddition between 4,6-dimethoxy-2-[4-prop-2-ynyl)piperazin-1-yl] pyrimidine and each of different azides catalysed by in situ generated Cu(I). The O-acyl protecting groups on glycosyl 1,2,3-triazoles were removed by triethylamine in wet methanol. Their chemical structures were established on the basis of corresponding 1H NMR, 13C NMR, MS and elemental analysis. The fungicidal activities of target compounds were evaluated in vitro against Fusarium omysporum, Physalospora piricola, Alternaria solani, Phytophthora capsici, Cercospora arachidicola and Gibberella zeae at 50 μg/mL. The bioassay results indicate that some of the compounds exhibited moderate but promising fungicidal activities. In particular, acetylated glucopyranosyl triazole displayed a good fungicidal activity against Physalospora piricola, which is equal to that of the positive control compound chlorothalonil.
1H-1,2,3-Triazole / Fungicidal activity / Huisgen cycloaddition reaction / Pyrimidinylpiperzine
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Huisgen R.; Ed.: Padwa A., 1,3-Dipolar Cycloaddition Chemistry, Wiley, New York, 1984, 1. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
/
| 〈 |
|
〉 |