Crystal engineering of multiple-component organic compound: Organic co-crystals of the functional groups of carboxyl and amino with persistent hydrogen bonding motifs

Ge Song , Feng-ying Bai , Na Xing , Chen Chen , Hui Shan , Yong-heng Xing

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 408 -413.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 408 -413. DOI: 10.1007/s40242-013-2327-0
Article

Crystal engineering of multiple-component organic compound: Organic co-crystals of the functional groups of carboxyl and amino with persistent hydrogen bonding motifs

Author information +
History +
PDF

Abstract

Three small organic molecular co-crystal compounds (C3N6H6)·(C6H10O4)·H2O(1), C3H8N2O(3) and (H4btec)2·(4,4′-bipy)(4)(H4btec=1,2,4,5-benzenetetracarboxylic acid, 4,4′-bipy=4,4′-bipyridine) and one coordination supramolecular compound [Mn(C2O4)(H2O)2]·C6H11NO2(2) were synthesized by hydrothermal reaction. They were characterized by elemental analysis, infrared(IR) spectroscopy and single crystal X-ray diffraction(XRD). Structural analyses reveal that these 2D or 3D supramolecular networks of the compounds were formed by $C---H \cdots O$, $N---H \cdots O$, $N---H \cdots N$, $O---H \cdots O$ and $O---H \cdots N$ hydrogen bonds. Therein, the functional groups of -COOH, -NH2 and -OH play important roles in constructing supramolecular architectures.

Keywords

co-Crystal compound / Hydrogen bond / Hydrothermal reaction

Cite this article

Download citation ▾
Ge Song, Feng-ying Bai, Na Xing, Chen Chen, Hui Shan, Yong-heng Xing. Crystal engineering of multiple-component organic compound: Organic co-crystals of the functional groups of carboxyl and amino with persistent hydrogen bonding motifs. Chemical Research in Chinese Universities, 2013, 29(3): 408-413 DOI:10.1007/s40242-013-2327-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grate J W. Chem. Rev., 2008, 108: 726.

[2]

Moore T S, Winmill T F. J. Chem. Soc., 1912, 101: 1635.

[3]

Schmidtke P, Javier L F, Murray J B, Barril X. J. Am. Chem. Soc., 2011, 133: 18903.

[4]

Joachimiak L, Kortemme A T, Stoddard B L, Baker D. J. Mol. Biol., 2006, 361: 195.

[5]

Schmidtke P, Barril X. J. Med. Chem., 2010, 53: 5858.

[6]

Sharma P, Sponer J E, Sponer J, Sharma S, Bhattacharyya D, Mitra A. J. Phys. Chem. B, 2010, 114: 3307.

[7]

Rusch U, Yao S, Wortmann R, Wurthner F. Angew. Chem. Int. Ed., 2006, 118: 7184.

[8]

Ángeles García M, Cabildo P, Claramunt R M, Pinilla E, Torres M R, Alkorta I, Elguero J. Inorg. Chim. Acta, 2010, 363: 1332.

[9]

Wang X Y, Xing N, Song G, Li Z, Bai F Y, Xing Y H. Chem. J. Chinese Universities, 2012, 33(6): 1143.

[10]

Lemmerer A, Adsmond D A, Bernstein J. Cryst. Growth Des., 2011, 11: 2011.

[11]

Ren D X, Cao Y Z, Chen C, Xing Y H. Chem. Res. Chinese Universities, 2012, 28(5): 768.

[12]

Kawasaki T, Tokuhiro M, Kimizuka N, Kunitake T. J. Am. Chem. Soc., 2001, 123: 6792.

[13]

Jin J, Xu W, Jia M J, Zhao J J, Yu J H, Xu J Q. Inorg. Chim. Acta, 2011, 378: 72.

[14]

Desiraju G R. Cryst. Growth Des., 2011, 11: 896.

[15]

Aakeröy C B, Chopade P D, Desper J. Cryst. Growth Des., 2011, 11: 5333.

[16]

Wurthner F, Yao S, Beginn U. Angew. Chem., 2003, 42: 3247.

[17]

Grate J W, Wise B M, Gallagher N B. Anal. Chim. Acta, 2003, 490: 169.

[18]

Balzani V, Gedi A, Raymo F M, Stoddart J F. Angew. Chem. Int. Ed., 2000, 39: 3348.

[19]

Kolev T, Yancheva D, Stoyanov S. Adv. Funct. Mater., 2004, 14: 799.

[20]

Koleva B B, Kolev T, Seidel R W, Mayer-Figge H, Spiteller M, Sheldrick W S. J. Phys. Chem. A, 2008, 112: 2899.

[21]

Liberman H F, Davey R J, Newsham D M T. Chem. Mater., 2000, 12: 490.

[22]

Dance I G. New J. Chem., 2003, 27: 22.

[23]

Willett R D, Awwadi F, Butcher R, Haddad S F, Twamley B. Cryst. Growth Des., 2003, 3: 301.

[24]

Dance I, Scudder M. New J. Chem., 2001, 25: 1510.

[25]

Haddad S F, Ali B F, Al-Far R H. Polyhedron, 2011, 30: 1061.

[26]

Sun D F, Cao R, Sun Y Q, Bi W H, Li X J, Wang Y Q, Shi Q, Li X. Inorg. Chem., 2003, 42: 7512.

[27]

Kathalikkattil A C, Subramanian P S, Eringathodi S. J. Chem. Crystallogr., 2010, 40: 1087.

[28]

Kathalikkattil A C, Bisht K K, Aliaga-Alcalde N, Suresh E. Cryst. Growth Des., 2011, 11: 1631.

[29]

Neve F, Crispini A. CrystEngComm, 2007, 9: 698.

[30]

Seaton C C, Parkin A, Wilson C C, Blagden N. Cryst. Growth Des., 2009, 9: 47.

[31]

Sheldrick G M. SADAB, Program for Empirical Absorption Correction for Area Detector Data, 1996, Götingen: University of Götingen.

[32]

Sheldrick G M. SHELX-97, Program for Crystal Structure Analysis, 1997, Götingen: University of Götingen.

[33]

Zhao H Y, Bai F Y, Xing Y H, Li Z P, Cao Y Z, Zeng X Q, Ge M F. J. Coord. Chem., 2010, 63: 435.

[34]

García-Terán J P, Castillo O, Luque A, García-Couceiro U, Beobide G, Román P. Cryst. Growth Des., 2007, 7: 2594.

[35]

Lemmerer A. CrystEngComm., 2011, 14: 2465.

[36]

Steiner T. Angew. Chem. Int. Ed., 2002, 41: 48.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/