Temperature dependence of chain conformation and local rigidity of isomerized polyimides in dimethyl formamide

Gui-hua Liu , Xue-peng Qiu , Mohammad Siddiq , Shu-qin Bo , Xiang-ling Ji

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 1022 -1028.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (5) : 1022 -1028. DOI: 10.1007/s40242-013-2323-4
Article

Temperature dependence of chain conformation and local rigidity of isomerized polyimides in dimethyl formamide

Author information +
History +
PDF

Abstract

Temperature dependence of chain conformation and local rigidity of two soluble isomerized polyimides (PIs), poly(hexafluorodianhydride/3,3′-dimethylbenzidine)[poly(6FDA/3,3′-DMB)] and poly(hexafluorodianhy-dride/2,2′-dimethylbenzidine)[poly(6FDA/2,2′-DMB)] were investigated by dilute solution viscosity, size exclusion chromatography(SEC) coupled with multi-angle laser light scattering, viscometer, and refractive index detector in dimethylformamide(DMF) with either 0.1 mol/L LiBr or 3.1 mmol/L tetrabutylammonium bromide(TBAB) in the temperature range of 30 to 50 °C. The scaling relationships of [η]=K η M α and R g=K g M ν obtained are employed to investigate the temperature dependence of chain conformation for the two polyimides. The values of α and ν are in the range of 0.66–0.69 and 0.53–0.56, respectively, for poly(6FDA/3,3′-DMB), meanwhile they are in the range of 0.64–0.68 and 0.53–0.56, respectively, for poly(6FDA/2,2′-DMB). These results reveal that random coil conformations for both PIs are not affected visibly with increasing temperature from 30 °C to 50 °C. However, values of more exact intrinsic viscosity from dilute solution measurement indicate there is only tiny coil extension or shrinkage for both PIs with temperature rising. Parameters related to chain flexibility of polymer, including persistence length l p, shift factor M L(relative molecular weight per unit contour length) and backbone diameter d are estimated from the relationship between intrinsic viscosity and molecular weight for the continuous wormlike cylinder model, which indicates that two samples are flexible chains, only the chain of poly(6FDA/3,3′-DMB) is stiffer than that of poly(6FDA/2,2′-DMB) slightly.

Keywords

Isomerized polyimide / Chain conformation / Temperature dependence / Wormlike chain / Persistence length

Cite this article

Download citation ▾
Gui-hua Liu, Xue-peng Qiu, Mohammad Siddiq, Shu-qin Bo, Xiang-ling Ji. Temperature dependence of chain conformation and local rigidity of isomerized polyimides in dimethyl formamide. Chemical Research in Chinese Universities, 2013, 29(5): 1022-1028 DOI:10.1007/s40242-013-2323-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang F C, Li Y F, Bu Q Q, Zhang S J, Ma T, Zhao J J. Polym. Degrad. Stabil., 2010, 95: 1950.

[2]

Huang T C, Hsieh C F, Yeh T C, Lai C L, Tsai M H, Yeh J M. J. Appl. Polym. Sci., 2011, 119: 548.

[3]

Ding M X. Polyimide: Chemistry, Relationship Between Structure and Properties and Materials, 2006, Beijing: Science Press.

[4]

Chen W T, Wang K L. Macromolecular Research, 2010, 18: 821.

[5]

Jiang G M, Jiang X, Zhu Y F, Huang D, Jing X H, Gao W D. Polym. Int., 2010, 59: 896.

[6]

Ma T, Zhang S J, Li Y F, Yang F C, Gong C L, Zhao J J. J. Fluorine Chem., 2010, 131: 724.

[7]

Wang Y R, Xu S G, Chen T, Guo H W, Liu Q Y, Ye B X, Zhang Z, He Z Q, Cao S K. Polymer Chemistry, 2010, 1: 1048.

[8]

Yang F C, Li Y F, Ma T, Bu Q Q, Zhang S J. J. Fluorine Chem., 2010, 131: 767.

[9]

Li Y Q, Xu H H, Tao X A, Qian K J, Fu S A, Shen Y Z, Ding S J. J. Mater. Chem., 2011, 21: 1810.

[10]

Ghaemy M, Alizadeh R, Nasr F H. J. Appl. Polym. Sci., 2010, 118: 3407.

[11]

Behniafar H, Boland P. Journal of Polymer Research, 2010, 17: 511.

[12]

Wang K L, Liu Y L, Shih I H, Neoh K G, Kang E T. J. Polym. Sci. A, Polym. Chem., 2010, 48: 5790.

[13]

Siddiq M, Hu H, Ding M, Li B, Wu C. Macromolecules, 1996, 29: 7426.

[14]

Kwan S C M, Wu C, Li F M, Savitski E P, Harris F W, Cheng S Z D. Macromol. Chem. Phys., 1997, 198: 3605.

[15]

Savitski E P, Li F M, Lin S H, McCreight K W, Wu W, Hsieh E, Rapold R F, Leland M E, McIntyre D M, Harris F W, Cheng S Z D, Kwan S C M, Wu C. Int. J. Polym. Anal. Ch., 1997, 4: 153.

[16]

Kwan S C M, Wu C, Li F M, Harris F W, Chang S Z D. Polym. Eng. Sci., 1999, 39: 586.

[17]

Siddiq M, Wu C. J. Appl. Polym. Sci., 2001, 81: 1670.

[18]

Liu G, Qiu X, Ji X, Bo S. Chromatographia, 2011, 75: 7.

[19]

Cheng R S. Polym. Bull., 1960, 4: 159.

[20]

Elias H G. An Introduction to Polymer Science, 1997, Weinheim: VCH Verlagsgesellschaft mbH, Weinheim & VCH Publishers, Inc.

[21]

Bohdanecky M. Macromolecules, 1983, 16: 1483.

[22]

Itou T, Chikiri H, Teramoto A, Aharoni S M. Polym. J., 1988, 20: 143.

[23]

Matsumoto A, Tarui T, Otsu T. Macromolecules, 1990, 23: 5102.

[24]

Norisuye T. Prog. Polym. Sci., 1993, 18: 543.

[25]

Peng Y, Zhang L, Zhang Y, Xu X, Kennedy J F. Carbohydr. Polym., 2005, 59: 351.

[26]

Benoit H, Doty P. J. Phys. Chem., 1953, 57: 958.

[27]

Kim S, Cotts P M, Volksen W. J. Polym. Sci. B, Polym. Phys., 1992, 30: 177.

[28]

Eyring H. Physical Review, 1932, 39: 746.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/