Facile chemical conversion synthesis and luminescence properties of uniform YF3 nanowires

Zhen-he Xu , Yu Gao , Xin Ge , Ya-guang Sun

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 1 -5.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 1 -5. DOI: 10.1007/s40242-013-2311-8
Article

Facile chemical conversion synthesis and luminescence properties of uniform YF3 nanowires

Author information +
History +
PDF

Abstract

Well-dispersed YF3 nanowires were synthesized by a designed hydrothermal conversion method with Y(OH)3 nanowires as precursor. Various equipments were used to characterize the samples. The results show that Y(OH)3 nanowires precursor was prepared through a simple hydrothermal process, which then served as the precursor for the fabrication of YF3 nanowires by a hydrothermal process. The whole process was carried out under aqueous conditions without any organic solvent, surfactant or catalyst. The conversion process from Y(OH)3 precursor to YF3 nanowires was investigated by time-dependent experiments. The possible formation mechanism of YF3 nanowires was presented in detail. Under UV excitation, 5%(mass fraction) Eu3+ or 5%(mass fraction) Tb3+ doped YF3 samples exhibit strong red or green emission, corresponding to the characteristic lines of Eu3+ and Tb3+, respectively. Moreover, the luminescence colors of the Eu3+ and Tb3+ codoped YF3 samples can be tuned from red, yellow and green-yellow to green by simply adjusting the relative doping concentrations of the activator ions under a single wavelength excitation, which might find potential applications in the fields of, such as, light display systems and optoelectronic devices.

Keywords

Luminescence / Hydrothermal synthesis / Rare earth / Inorganic compound

Cite this article

Download citation ▾
Zhen-he Xu, Yu Gao, Xin Ge, Ya-guang Sun. Facile chemical conversion synthesis and luminescence properties of uniform YF3 nanowires. Chemical Research in Chinese Universities, 2013, 29(1): 1-5 DOI:10.1007/s40242-013-2311-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alivisatos A. P. Science, 1996, 271: 933.

[2]

Guo L., Yuan H. M., Huang K. K., Yuan L., Liu S. K., Feng S. H. Chem. Res. Chinese Universities, 2011, 27(5): 715.

[3]

Zhu L. L., Chen Y., Huang K. K., Zhang G. H., Hu W. W., Yuan H. M., Chang H. B., Feng S. H. Chem. Res. Chinese Universities, 2010, 26(5): 707.

[4]

Xu Z. H., Ma P. A., Li C. X., Hou Z. Y., Zhai X. F., Huang S. S., Lin J. Biomaterials, 2011, 32: 4161.

[5]

Jin R. C., Cao Y. W., Mirkin C. A., Kelly K. L., Schatz G. C., Zheng J. Science, 2001, 294: 1901.

[6]

Feng W., Zhao G. Y., Sun L. D., Yan C. H. Chem. J. Chinese Universities, 2011, 32(3): 635.

[7]

Wang F. D., Tang R. W., Buhro E. Nano Lett., 2008, 8: 3521.

[8]

Mu Q. Y., Chen T., Wang Y. D. Nanotechnology, 2009, 20: 345602.

[9]

Hu C. G., Liu H., Dong W. T., Zhang Y. Y., Bao G., Lao C. S., Wang Z. L. Adv. Mater., 2007, 19: 470.

[10]

Hou Z. Y., Yang P. P., Li C. X., Wang L. L., Lian H. Z., Quan Z. W. L. J. Chem. Mater., 2008, 20: 6686.

[11]

Li C. X., Yang J., Quan Z. W., Yang P. P., Kong D. Y., Lin J. Chem. Mater., 2007, 19: 4933.

[12]

Xu Z. H., Li C. X., Yang D. M., Wang W. X., Kang X. J., Shang M. M., Lin J. Phys. Chem. Chem. Phys., 2010, 12: 11315.

[13]

Song S. Y., Han W. Q., Zhang H. J. Chem. J. Chinese Universities, 2011, 32(3): 508.

[14]

Fang Y. P., Xu A. W., Song R. Q., Zhang H. X., You L. P., Yu J. C., Liu H. Q. J. Am. Chem. Soc., 2003, 125: 16025.

[15]

Xu Z. H., Li C. X., Yang P. P., Zhang C. M., Huang S. S., Lin J. Cryst. Growth Des., 2009, 9: 4752.

[16]

Xu Z. H., Cao Y., Li C. X., Ma P. A., Zhai X. F., Huang S. S., Kang X. J., Shang M. M., Yang D. M., Dai Y. L., Lin J. J. Mater. Chem., 2011, 21: 3686.

[17]

Zhu L., Meng J., Cao X. Q. Eur. J. Inorg. Chem., 2007, 24: 3863.

[18]

Jia G., You H. P., Song Y. H., Jia J. J., Zheng Y. H., Zhang L. H., Liu K., Zhang H. J. Inorg. Chem., 2009, 48: 10193.

[19]

Xu Z. H., Li C. X., Yang D. M., Wang W. X., Kang X. J., Shang M. M., Lin J. Phys. Chem. Chem. Phys., 2009, 11: 3623.

[20]

Zhang F., Zhao D. Y. ACS Nano., 2009, 3: 159.

[21]

Deshazer L. G., Dieke G. H. J. Chem. Phys., 1963, 38: 2190.

[22]

Judd B. R. Phys. Rev., 1962, 127: 750.

[23]

Thomas K. S., Singh S., Dieke G. H. J. Chem. Phys., 1963, 38: 2180.

[24]

Robbins D. J., Cockayne B., Chang N. C., Clasper J. L. Solid State Commun., 1976, 20: 673.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/