In situ remediation of petroleum contaminated groundwater by permeable reactive barrier with hydrothermal palygorskite as medium

Sheng-yu Zhang , Yu-ling Zhang , Xiao-si Su , Ying Zhang

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 37 -41.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 37 -41. DOI: 10.1007/s40242-013-2303-8
Article

In situ remediation of petroleum contaminated groundwater by permeable reactive barrier with hydrothermal palygorskite as medium

Author information +
History +
PDF

Abstract

The permeable reactive barrier(PRB) has proven to be a cost-effective technique to remediate the petroleum contaminated groundwater at a northeast field site in China. In this study, the geology, hydrogeology and contamination characterization of the field site were investigated and the natural hydrothermal palygorskite was chosen as a reactive medium. Furthermore, the adsorption of the total petroleum hydrocarbons(TPH) in the groundwater onto hydrothermal palygorskite and the adsorption kinetics were investigated. The results indicate that the removal rates of TPH, benzene, naphthalene and phenantharene could all reach up to 90% by hydrothermal palygorskite with a diameter of 0.25–2.00 mm that had been thermally pretreated at 140 °C. The adsorption of TPH onto hydrothermal palygorskite after pretreatment followed a pseudo-second-order kinetic model and a Langmuir adsorption isotherm, suggesting that the theoretic adsorption capacity of hydrothermal palygorskite for adsorbate could be 4.2 g/g. Scanning electron microscopy(SEM), infrared spectroscopy(IR), X-ray diffraction(XRD) and X-ray fluorescence spectroscopy( XRF) were carried out to analyze the adsorption mechanism. The results reveal that hydrothermal palygorskite is a fibrous silicate mineral enriched in Mg and Al with large surface area and porosity. The dense cluster acicular and fibrous crystal of hydrothermal palygorskite, and its effect polar group —OH played an important role in the physical and chemical adsorption processes of it for contaminants. This study has demonstrated hydrothermal palygorskite is a reliable reactive medium for in situ remediation of petroleum contaminated groundwater at field sites.

Keywords

Petroleum contaminated groundwater / Hydrothermal palygorskite / Total petroleum hydrocarbon(TPH) / Adsorption

Cite this article

Download citation ▾
Sheng-yu Zhang, Yu-ling Zhang, Xiao-si Su, Ying Zhang. In situ remediation of petroleum contaminated groundwater by permeable reactive barrier with hydrothermal palygorskite as medium. Chemical Research in Chinese Universities, 2013, 29(1): 37-41 DOI:10.1007/s40242-013-2303-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mieles J., Zhan H. B. J. Contam. Hydrol., 2012, 134: 54.

[2]

Environmental Protection Agency US, Permeable Reactive Barrier Technologies for Contaminant Remediation, 1998

[3]

Muchitsch N., Nooten T. V., Bastiaens L., Kjeldsen P. J. Contam. Hydrol., 2011, 126: 258.

[4]

Gibert O., Rötting T., Cortina J. L., Pablo J. D., Ayora C., Carrera J., Bolzicco J. J. Hazard. Mater., 2011, 191: 287.

[5]

Suzuki T., Oyama Y., Moribe M., Niinae M. Water Res., 2012, 46: 772.

[6]

Peng L., Zhang C., Li H., Qiu J., Chen Z., Lin T. Environ. Sci. Manage., 2011, 36: 47.

[7]

Zhang Y., Zhang Y. L., Zhang S. Y., Song F., Huang J. Y., Zhang Y., Bai X. D. Adv. Mater. Res., 2012, 535–537: 2457.

[8]

Zhang Y., Zhang Y. L., Zhang S. Y., Wan Y. Y., Li H. X. J. Jilin Univ., Earth Sci. Edition, 2010, 40: 399.

[9]

Drits V. A., Sokolova G. V. Crystallograph, 1971, 16: 183.

[10]

Xu J. X., Wang W. B., Mu B., Wang A. Q. Colloids Surf. A, 2012, 405: 59.

[11]

Xu J. X., Zhang J. P., Wang Q., Wang A. Q. Appl. Clay Sci., 2011, 54: 118.

[12]

Galan E. Clay Miner., 1996, 31: 443.

[13]

Murray H. H. Appl. Clay Sci., 2000, 17: 207.

[14]

Wang M., Qian J. W., Zheng B. Q., Yang W. Y., Jiang W. F., Fang Z., Ye Y. Chem. J. Chinese Universities, 2004, 25(8): 1567.

[15]

Al-Futaisi A., Jamrah A., Al-Hanai R. Desalination, 2007, 214: 327.

[16]

Shariatmadari H., Mermut A. R., Benke M. B. Clays Clay Miner., 1999, 47: 44.

[17]

Zhai S. F., Li D. J. Chin. Electr. Microsc. Soc., 1988, 3: 277.

[18]

Song G. B., Liu F. S., Cao Y. G., Peng T. J., Dong F. Q., Wan P. Acta Petrol. Sin., 1999, 15: 469.

[19]

Necip G. Clays Clay Miner., 1992, 40: 457.

[20]

Chen T. H. Geol. Anhui, 1999, 9: 199.

[21]

Kong D. J., Chen T. H., Liu H. B., Chen D., Xie J. J., Qing C. S. J. Chin. Ceram. Soc., 2011, 39: 867.

[22]

Kuang W. X., Facey G. A., Detllie C. D. Clays Clay Miner., 2004, 52: 635.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/