Syntheses and supramolecular structures of two nickel(II) compounds based on two thiosemicarbazone ligands

Cheng-juan Li , Ze-jing Feng , Xiao-juan Zhao , Su-na Wang , Jian-min Dou

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 414 -418.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 414 -418. DOI: 10.1007/s40242-013-2275-8
Article

Syntheses and supramolecular structures of two nickel(II) compounds based on two thiosemicarbazone ligands

Author information +
History +
PDF

Abstract

Two new compounds, [Ni2(L1)(Py)6]Py·CH3OH(1) and [Ni3(L2)2(Py)4]·2DMF(2)(H4L1=N,N′-bisalicyl-bisthiocarbamide; H3L2=3-hydroxyl-2-naphthalene thiosemicarbazide; Py=pyridine; DMF=dimethyl fumarate), based upon two thiosemicarbazone ligands have been obtained and characterized by elemental analysis, Fourier transform infrared(FTIR) and X-ray diffraction(XRD). Compound 1 possesses a binuclear cluster, in which the bisalicylbisthiocarbamide acts as a hexadentate bridge. Compound 2 exhibits a linear trinuclear cluster with the triply-deprotonated ligand acting as pentadentate bridge. C—H…O, C—H…π and C—H…S weak interactions further link these molecules to form interesting supramolecular networks.

Keywords

Thiosemicarbazone ligand / Weak interaction / Supramolecular framework

Cite this article

Download citation ▾
Cheng-juan Li, Ze-jing Feng, Xiao-juan Zhao, Su-na Wang, Jian-min Dou. Syntheses and supramolecular structures of two nickel(II) compounds based on two thiosemicarbazone ligands. Chemical Research in Chinese Universities, 2013, 29(3): 414-418 DOI:10.1007/s40242-013-2275-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yaghi O M, Li H, Davis C, Richardson D, Groy T L. Acc. Chem. Res., 1998, 31: 474.

[2]

Janiak C. J. Chem. Soc., Dalton Trans., 2003, 17: 2781.

[3]

Papaefstathiou G S, MacGillivray L R. Coord. Chem. Rev., 2003, 246: 169.

[4]

Bradshaw D, Claridge J B, Cussen E J, Prior T J, Rosseinsky M J. Acc. Chem. Res., 2005, 38: 273.

[5]

Kitagawa S, Noro S, Nakamura T. Chem. Commun., 2006, 7: 701.

[6]

Li C H, Huang K L, Chi Y N, Liu X, Han Z G, Shen L, Hu C W. Inorg. Chem., 2009, 48: 2010.

[7]

Zhang J, Bu X H. Chem. Commun., 2009, 206.

[8]

Zhan S Z, Li M, Hou J Z, Ni J, Li D, Huang X C. Chem. Eur. J., 2008, 14: 8916.

[9]

Zhao J P, Hu B W, Sanudo E C, Yang Q, Zeng Y F, Bu X H. Inorg. Chem., 2009, 48: 2482.

[10]

Ye H Y, Fu D W, Zhang Y, Zhang W, Xiong R G, Huang S P D. J. Am. Chem. Soc., 2009, 131: 42.

[11]

Dai F N, He H Y, Sun D F. J. Am. Chem. Soc., 2008, 130: 14064.

[12]

Su Z, Cai K, Fan J, Chen S S, Chen M S, Sun W Y. CrystEng-Comm., 2010, 12: 100.

[13]

Zheng B, Dong H, Bai J, Li Y Z, Li S H, Scheer M. J. Am. Chem. Soc., 2008, 130: 7778.

[14]

Braga D, Grepioni F, Desiraju G R. Chem. Rev., 1998, 98: 1375.

[15]

Braga D, Grepioni F. Acc. Chem. Res., 2000, 33: 601.

[16]

Roesky H W, Andruh M. Coord. Chem. Rev., 2003, 236: 91.

[17]

Uemura K., Saito K., Kitagawa S., Kita H. J. Am. Chem. Soc., 2006, 128: 16122.

[18]

Zhou L J, Wang Y Y, Zhou C H, Wang C J, Shi Q Z, Peng S M. Cryst. Growth Des., 2007, 7: 300.

[19]

Katsuki I, Motoda Y, Sunatsuki Y, Matsumoto N, Nakashima T, Kojima M. J. Am. Chem. Soc., 2002, 124: 629.

[20]

Aitipamula S, Thallapally P K, Thaimattam R, Jaskolski M, Desiraju G. Org. Lett., 2002, 4: 921.

[21]

Bhogala B R, Thallapally P K, Nangia A. Cryst. Growth Des., 2004, 4: 215.

[22]

Wei W, Wu M Y, Gao Q, Zhang Q F, Huang Y G, Jiang F L, Hong M C. Inorg. Chem., 2009, 48: 420.

[23]

Goldberg I. Chem. Commun., 2005, 1243.

[24]

Varughese S, Pedireddi V R. Chem. Commun., 2005, 1824.

[25]

Li D S, Wang Y Y, Luan X J, Liu P, Zhou C H, Ma H R, Shi Q H. Eur. J. Inorg. Chem., 2005, 2678.

[26]

Dan M, Cheetham A K, Rao C N R. Inorg. Chem., 2006, 45: 8227.

[27]

Garcia H C, Diniz R, Yoshida M I, Oliveria L F C. CrystEngComm, 2009, 11: 881.

[28]

Jiang X J, Zhang S Z, Guo J H, Wang X G, Li J S, Du M. CrystEngComm, 2009, 11: 855.

[29]

Yue Q, Qian X B, Yan L, Gao E Q. Inorg. Chem. Commun., 2008, 11: 1067.

[30]

Turner D R, Pek S N, Battern S R. CrystEngComm, 2009, 11: 87.

[31]

Wang S N, Yang Y, Bai J F, Li Y Z, Scheer M, Pan Y, You X Z. Chem. Commun., 2007, 4416.

[32]

Stephenson M D, Hardie M J. Cryst. Growth. Des., 2006, 6: 423.

[33]

Saryan L A, Ankel E, Krishnamuti C, Petering D H, Elford H. J. Med. Chem., 1979, 22: 2218.

[34]

Garcia-Tojal J, Karmele Urtiaga M, Cortes R, Lezama L, Arriortua M I, Rojo T. J. Chem. Soc., Dalton Trans., 1994, 2233.

[35]

Bingham A G, Bogge H, Muller A, Ainscough E W, Brodie A M. J. Chem. Soc., Dalton Trans., 1987, 493.

[36]

Mahajan R K, Kaur I, Lobana T S. Talanta, 2003, 59: 101.

[37]

Mahajan R K, Kaur I, Lobana T S. Ind. J. Chem., 2006, 45A: 639.

[38]

Mahajan R K, Walia T P S, Sumanjit T S. Lobana, Talanta, 2005, 67: 755.

[39]

Sarma L S, Kumar J R, Kumar C J, Reddy AV. Anal. Lett., 2003, 36: 605.

[40]

Sheldrick G M. SHELXS-97, Programs for Crystal Structure Solution, 1997, Göttingen: University of Göttingen.

[41]

Sheldrick G M. SHELXL-97, Programs for Crystal Structure Refinement, 1997, Göttingen: University of Göttingen.

[42]

Luo W, Meng X, Sun X, Xiao F, Shen J, Zhou Y, Cheng G, Ji Z. Inorg. Chem. Comm., 2007, 10: 1351.

[43]

Alcock N W, Barker P R, Haider J M, Hannon M J, Painting C L, Pikramenou Z, Plummer E A, Rissanen K, Saarenketo P. J. Chem. Soc., Dalton Trans., 2000, 1447.

[44]

Nishio M. CrystEngComm, 2004, 6: 130.

[45]

Reger D L, Gardinier J R, Semeniuc R F, Smith M D. J. Chem. Soc., Dalton Trans., 2003, 1712.

[46]

Wang W, Xi P, Su X, Lan J, Mao Z, You J, Xie R. Cryst. Growth Des., 2007, 7: 741.

[47]

Li C J, Feng Z J, Dou J M, Li D C, Wang D Q. J. Mol. Struct., 2010, 970: 19.

[48]

Wu C D, Lu C Z, Lu S F, Zhuang H H, Huang J S. Inorg. Chem. Commun., 2002, 5: 171.

[49]

Carlin R L. Magnetochemistry, 1983, New York: Springer.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/