Effects of sodium sulfate as electrolyte additive on electrochemical performance of lead electrode

Jin-yu Yu , Zhao-hong Qian , Meng Zhao , Yu-jie Wang , Lin Niu

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 374 -378.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 374 -378. DOI: 10.1007/s40242-013-2261-1
Articles

Effects of sodium sulfate as electrolyte additive on electrochemical performance of lead electrode

Author information +
History +
PDF

Abstract

Sodium sulfate as an electrolyte additive was studied via electrochemical methods including linear sweep voltammetry(LSV), cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS) to deeply understand its effect on the hydrogen evolution current and overpotential as well as the formation and structure of anodic passivation films on lead surface during the redox processes. The results achieved will be valuable to improve the cycle life and maintenance-free properties of lead-acid batteries.

Keywords

Electrolyte additive / Sodium sulfate / Lead electrode / Hydrogen evolution reaction / Anodic film

Cite this article

Download citation ▾
Jin-yu Yu, Zhao-hong Qian, Meng Zhao, Yu-jie Wang, Lin Niu. Effects of sodium sulfate as electrolyte additive on electrochemical performance of lead electrode. Chemical Research in Chinese Universities, 2013, 29(2): 374-378 DOI:10.1007/s40242-013-2261-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rand D. A. J. Power Sources, 1987, 19: 235.

[2]

Liu H. T., Liang H. H., Yang J., Zhou W. F. Chem. J. Chinese Universities, 2002, 23(1): 116.

[3]

Tokiyoshi H., Kazuya S., Masami T. J. Power Sources, 2000, 85: 44.

[4]

Rezaei B., Damiri S. J. Solid State Electrochem., 2005, 9: 590.

[5]

Azim A. A., Anwar M. M. Corrors. Sci., 1969, 9: 245.

[6]

Azim A. A., Gouda V. K., Shalaby L. A., Afifi S. E. Br. Corros. J., 1973, 8: 76.

[7]

Gouda V. K., Shalaby L. A., Azim A. A. Br. Corros. J., 1973, 8: 81.

[8]

Thibeau R. J., Brown C. W., Goldfarb A. Z., Heidersbach R. H. J. Electrochem. Soc., 1980, 127: 37.

[9]

Bhattacharya A., Basumallick I. N. J. Power Sources, 2003, 113: 382.

[10]

Hirai N., Kubo S., Magara K. J. Power Sources, 2009, 191: 97.

[11]

Chatelut M., Chah-Bouzziri S., Vittori O., Benayada A. J. Solid State Electrochem., 2000, 4: 435.

[12]

Bullock K. R., McClelland D. H. J. Electrochem. Soc., 1977, 124: 1478.

[13]

Meissner E. J. Power Sources, 1997, 67: 135.

[14]

Paleska I., Puszkowska D. R., Kotowski J., Dziudzi A., Milewski J. D., Kopczyk M., Czerwinski A. J. Power Sources, 2003, 113: 308.

[15]

Li S., Chen H. Y., Tang M. C., Wei W. W., Xia Z. W., Wu Y. M., Li W. S., Jiang X. J. Power Sources, 2006, 158: 914.

[16]

Badaway W. A., El-Egamy S. S. J. Power Sources, 1995, 55: 11.

[17]

Ghasemi Z., Tizpar A. Appl. Surf. Sci., 2006, 252: 3667.

[18]

Dietz H., Hoogestraat G., Laibach S., Von Borstel D., Wiesener K. J. Power Sources, 1995, 53: 359.

[19]

Abd El Aal E. E. J. Power Sources, 1998, 75: 36.

[20]

Abd El Aal E. E. J. Power Sources, 2001, 102: 233.

[21]

Bard A. J., Faulkner L. R. Electrochemical Methods: Fundamentals and Applications, Second Edition, 2001, New York: John Wiley & Sons Inc.

[22]

Branzoi V., Sternbery S., Apateanu L. Rew. Rown. Chim., 1985, 30: 199.

[23]

Janakira R., Balakrishnam P. G., Devasehayan M. Trans. SAEST, 1992, 27: 177.

[24]

Brinic S., Metikos H., Babic M. R. J. Power Sources, 1995, 55: 19.

[25]

Han J., Pu C., Zhou W. F. J. Electroanal. Chem., 1994, 368: 43.

[26]

Culpin B., Rand D. A. J. J. Power Sources, 1991, 36: 415.

[27]

Pavlov D., Poulieff C. N., Klaja E., Iordanov N. J. Electrochem. Soc., 1969, 116: 316.

[28]

Pavlov D. Electrochim. Acta, 1968, 13: 2051.

[29]

Pavlov D., Popova R. Electrochim. Acta, 1970, 15: 1483.

[30]

Liu H. T., Liang H. H., Yang J., Zhou W. F. Chin. J. Chem., 2000, 18: 489.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/