Comparison of Sn n(n=2–15) neutral and ionic structures

Qing-jun Zang , Guang-ju Chen , Wei Qin , Li-zhen Zhao , Wen-cai Lü

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 579 -583.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (3) : 579 -583. DOI: 10.1007/s40242-013-2215-7
Article

Comparison of Sn n(n=2–15) neutral and ionic structures

Author information +
History +
PDF

Abstract

A large number of the isomers of neutral and ionic Sn n(n=2–15) clusters have been designed and optimized at the level of MP2/LANL2DZ with the aid of the Gaussian 09 software package. The most stable geometric structures of ionic(cationic and anionic) Sn clusters have been compared with the corresponding neutral geometries. Most structures of Sn n + and Sn n are similar to each other except for the structures of those with n=5, 11 and 15; while the anions Sn n are almost different from Sn n clusters with n=9–15 except for Sn12 and Sn14 . The electronic properties have been calculated, including binding energy, second difference in energy, HOMO-LUMO gaps, ionization potentials, and electron affinities.

Keywords

Sn cluster / Geometric structure / Electronic property

Cite this article

Download citation ▾
Qing-jun Zang, Guang-ju Chen, Wei Qin, Li-zhen Zhao, Wen-cai Lü. Comparison of Sn n(n=2–15) neutral and ionic structures. Chemical Research in Chinese Universities, 2013, 29(3): 579-583 DOI:10.1007/s40242-013-2215-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jones R O. J. Chem. Phys., 1999, 110: 5189.

[2]

Handschuh H, Gantefor G, Kessler B, Bechthold P S, Eberhardt W. Phys. Rev. Lett., 1995, 74: 1095.

[3]

Jones R O, Seifert G. Phys. Rev. Lett., 1997, 79: 443.

[4]

Yoo S, Zeng X C. J. Chem. Phys., 2006, 124: 184309.

[5]

Qin W, W C, Zhao L Z, Zang Q J, Chen G J, Wang C Z, Ho K M. J. Chem. Phys., 2009, 131: 124507.

[6]

Yoo S, Zeng X C. J. Chem. Phys., 2006, 124: 054304.

[7]

Zhu X L, Zeng X C, Lei Y A, Pan B C. J. Chem. Phys., 2004, 120: 8985.

[8]

Zhao L Z, W C, Qin W, Zang Q J, Wang C Z, Ho K M. J. Chem. Phys. A, 2008, 112: 5815.

[9]

Qin W, Zang Q J, W C, Wang C Z, Ho K M. Chem. Res. Chinese Universities, 2011, 27(2): 313.

[10]

Li X P, W C, Zang Q J, Chen G J, Wang C Z, Ho K M. J. Phys. Chem. A, 2009, 113: 6217.

[11]

Li X P, W C, Wang C Z, Ho K M. J. Phys.: Condens. Mat., 2010, 22: 465501.

[12]

Li X P, Zhang W, W C, Wang C Z, Ho K M. Chem. Res. Chinese Universities, 2010, 26(6): 996.

[13]

Burgers W G, Groen L. J. Discuss. Faraday Soc., 1957, 23: 183.

[14]

Shvartsburg A A, Jarrold M F. Phys. Rev. Lett., 2000, 85: 2530.

[15]

Tai Y, Murakami J, Majumder C, Kumar V, Mizuseki H, Kawazoe Y. Eur. Phys. J. D, 2003, 24: 295.

[16]

Tai Y, Murakami J, Majumder C, Kumar V, Mizuseki H, Kawazoe Y. J. Chem. Phys., 2002, 117: 4317.

[17]

Watanabe M, Saito Y, Nishigaki S, Node T. Japan. J. Appl. Phys., 1988, 27: 344.

[18]

Drebov N, Oger E, Rapps T, Kelting R, Schooss D, Weis P, Kappes M M, Ahlrichs R. J. Chem. Phys., 2010, 133: 224302.

[19]

LaiHing K, Wheeler R G, Wilson W L, Duncan M A. J. Chem. Phys., 1987, 87: 3401.

[20]

Assadollahzadeh B, Schafer S, Schwerdtfeger P A. J. Comp. Chem., 2010, 31: 929.

[21]

Gupta U, Reber A C, Melko J J, Khanna S N, Castleman A W Jr. Chem. Phys. Lett., 2011, 505: 92.

[22]

Shvartsburg A A, Jarrold M F. Phys. Rev. A, 1999, 60: 1235.

[23]

Cui L F, Wang L M, Wang L S. J. Chem. Phys., 2007, 126: 064505.

[24]

Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian 09, Revision A.01, Gaussian Inc., Wallingford CT, 2009

[25]

Yoshida S, Fuke K. J. Chem. Phys., 1999, 111: 3880.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/