Synthesis of γ-Al2O3 with high surface area and large pore volume by reverse precipitation-azeotropic distillation method

Yu-sheng Wu , Jiao Ma , Ming-chun Li , Fang Hu

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 206 -209.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 206 -209. DOI: 10.1007/s40242-013-2207-7
Articles

Synthesis of γ-Al2O3 with high surface area and large pore volume by reverse precipitation-azeotropic distillation method

Author information +
History +
PDF

Abstract

γ-Al2O3 with high surface area and large pore volume combined with high thermal stability was synthesized by a reverse precipitation-azeotropic distillation method. The effects of azeotropic distillation on the characteristics of γ-Al2O3 were studied by means of X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, transmission electron microscopy(TEM) and N2 adsorption-desorption. The results show that γ-Al2O3 dried by azeotropic distillation has excellent structure characteristics with a high surface area of 426 m2/g and a large pore volume of 2.56 cm3/g. After calcination at 1100 °C, the surface area of γ-Al2O3 was still 92 m2/g with a large pore volume of 1.00 cm3/g, indicating the potential application in catalyst and petroleum industry.

Keywords

Reverse precipitation / Azeotropic distillation / γ-Alumina / n-Butyl alcohol / Thermal stability

Cite this article

Download citation ▾
Yu-sheng Wu, Jiao Ma, Ming-chun Li, Fang Hu. Synthesis of γ-Al2O3 with high surface area and large pore volume by reverse precipitation-azeotropic distillation method. Chemical Research in Chinese Universities, 2013, 29(2): 206-209 DOI:10.1007/s40242-013-2207-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fang D. R., Ren W. Z., Liu Z. M., Xu X. F., Zhang H. M., Liao W. P. Chem. Res. Chinese Universities, 2010, 26(1): 105.

[2]

Wang J. L., Liu Z. M., Cao H. Y., Gong M. C., Chen Y. D., Chen Y. Q. Chem. Res. Chinese Universities, 2009, 25(1): 81.

[3]

Looi P. Y., Mohamed A. R., Tye C. T. Chem. Eng. J., 2012, 181/182: 717.

[4]

Morris S. M., Fulvio P. F., Jaroniec M. J. Am. Chem. Soc., 2008, 130: 15210.

[5]

Yuan Q., Yin A. X., Luo C., Sun L. D., Zhang Y. W., Duan W. T., Liu H. C., Yan C. H. J. Am. Chem. Soc., 2008, 130: 3465.

[6]

Li X. M., Peng N., Chen S. H., Zhao M., Chen Y. Q., Gong M. C. Chem. J. Chinese Universities, 2011, 32(1): 1.

[7]

Zhang L. J., Dong W. P., Chen Y. Q., Shi Z. H., Liu Z. M., Zhao M., Gong M. C. Chem. J. Chinese Universities, 2007, 28(5): 968.

[8]

Jiao W. Q., Yue M. B., Wang Y. M., He M. Y. Micropor. Mesopor. Mat., 2012, 37: 167.

[9]

Wu Y. S., Ma J., Hu F., Li M. C. J. Mater. Sci. Technol., 2012, 28: 572.

[10]

Sun Q. P., Zheng Y., Zheng Y., Xiao Y. H., Cai G. H., Wei K. M. Scrip. Mater., 2011, 65: 1026.

[11]

Sun L. B., Tian W. H., Liu X. Q. J. Phys. Chem. C, 2009, 113: 19172.

[12]

Wang J., Wang Y. H., Wen J., Shen M. Q., Wang W. L. Micropor. Mesopor. Mat., 2009, 121: 208.

[13]

Cai W. Q., Li H. Q., Zhang Y. Colloids Surf. A, 2007, 295: 185.

[14]

Yang H. M., Liu M. Z., Yang J. O. Appl. Clay. Sci., 2010, 47: 438.

[15]

Jeong H. K., Noh H. J., Kim J. Y., Jin M. H., Park C. Y., Lee Y. H. Europhys. Lett., 2008, 82: 67004.

[16]

Padmaja P., Pillai P. K., Warrier K. G. K. J. Porous. Chem., 2004, 11: 147.

[17]

Ece O. I., Alemdar A., Güngör N., Hayashi S. J. Appl. Polym. Sci., 2002, 86: 341.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/