Synthesis and characterization of pH-Responsive block copolymers with primary amine groups

Hong Wang , Yue-jun Zhu , Xiao-na Ren , Hong Zhang , Ye-bang Tan

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 389 -395.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 389 -395. DOI: 10.1007/s40242-013-2193-9
Articles

Synthesis and characterization of pH-Responsive block copolymers with primary amine groups

Author information +
History +
PDF

Abstract

A new pH-responsive block copolymer, methoxy poly(ethylene glycol)-b-poly[5-methacrylamido-pentylamine hydrochloride](mPEG-b-PMAAPA) was synthesized and characterized in this paper. The monomer 5-methacrylamido-pentylamine hydrochloride(MAAPA) and the macroinitiator(mPEG-ACVA) were synthesized, respectively, and mPEG-b-PMAAPA was then obtained by free radical polymerization. The structure and molecular weight of mPEG-b-PMAAPA were confirmed by hydrogen nuclear magnetic resonance(1H NMR) spectroscopy and gel permeation chromatography with multiangle laser light scattering(GPC-MALLS) measurements. At a low pH, it is hydrophilic due to the protonation of the primary amine groups. With increasing pH value, deprotonation occurs and the hydrophobicity of PMAAPA block increases. This molecular feature leads to interesting aggregation behavior of mPEG-b-PMAAPA in aqueous solutions at different pH values as revealed by dynamic light scattering(DLS) measurements, transmission electron microscopy(TEM) observations and resonance light scattering(RLS) measurements.

Keywords

Block copolymer / Polyamine / pH-Responsive / Water soluble copolymer

Cite this article

Download citation ▾
Hong Wang, Yue-jun Zhu, Xiao-na Ren, Hong Zhang, Ye-bang Tan. Synthesis and characterization of pH-Responsive block copolymers with primary amine groups. Chemical Research in Chinese Universities, 2013, 29(2): 389-395 DOI:10.1007/s40242-013-2193-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Larranaga M., Serrano E., Martin M. D., Tercjak A., Kortaberria G., de la Caba K., Riccardi C. C., Mondragon I. Polym. Int., 2007, 56: 1392.

[2]

Peres B., Richardeau N., Jarroux N., Guegan P., Auvray L. Biomacromolecules, 2008, 9: 2007.

[3]

Checot F., Lecommandoux S., Gnanou Y., Klok H. A. Angew. Chem. Int. Ed, 2002, 41: 1339.

[4]

Oh J. K., Dong H., Zhang R., Matyjaszewski K., Schlaad H. J. Polym. Sci. A, Polym. Chem., 2007, 45: 4764.

[5]

Bajpai A. K., Shukla S. K., Bhanu S., Kankane S. Prog. Polym. Sci., 2008, 33: 1088.

[6]

Oh J. K., Drumright R., Siegwart D. J., Matyjaszewski K. Prog. Polym. Sci., 2008, 33: 448.

[7]

Hadjichristidis N., Iatrou H., Pitsikalis M., Pispas S., Avgeropoulos A. Prog. Polym. Sci., 2005, 30: 725.

[8]

Discher D. E., Eisenberg A. Science, 2002, 297: 967.

[9]

Park B. W., Yoon D. Y., Kim D. S. Biosens. Bioelectron., 2010, 26: 1.

[10]

Zayed J. M., Nouvel N., Rauwald U., Scherman O. A. Chem. Soc. Rev., 2010, 39: 2806.

[11]

Schatz C., Lecommandoux S. Macromol. Rapid Commun., 2010, 31: 1664.

[12]

Volkering F., Breure A. M., Rulkens W. H. Biodegradation, 1997, 8: 401.

[13]

Liu L. L., Wang S. W., Li Y. P., Sa Z. P., Zhu M., Pan S., Yang Y. M. Chem. J. Chinese Universities, 2010, 31(12): 2521.

[14]

Caputo A., Betti M., Altavilla G., Bonaccorsi A., Boarini C., Marchisio M., Butto S., Sparnacci K., Laus M., Tondelli L., Ensoli B. Vaccine, 2002, 20: 2303.

[15]

Talelli M., Rijcken C. J. F., van Nostrum C. F., Storm G., Hennink W. E. Advan. Drug Delivery Rev., 2010, 62: 231.

[16]

Shi W. P., Zhao C. Y., Li S. M., Fan Z. Y. Chem. J. Chinese Universities, 2012, 33(9): 2092.

[17]

Gaucher G., Satturwar P., Jones M. C., Furtos A., Leroux J. C. Eur. J. Pharm. Biopharm., 2010, 76: 147.

[18]

Lefevre N., Fustin C. A., Gohy J. F. Macromol. Rapid. Commun., 2009, 30: 1871.

[19]

Zhang X. M., Zhang J. W., Wei G. Y., Liu D. X., Yu D. H., Yao W. G., Dong W. F. Chem. J. Chinese Universities, 2012, 33(9): 2085.

[20]

Meng L. M., Huang Q. R., Deng J., Wu Y. J., Shi T. F. Chem. J. Chinese Universities, 2012, 33(7): 1624.

[21]

Xu C. H., Sui M. H., Tang J. B., Shen Y. Q. Chinese J. Polym. Sci., 2011, 29: 274.

[22]

Yoshitomi T., Suzuki R., Mamiya T., Matsui H., Hirayama A., Nagasaki Y. Bioconjugate Chemistry, 2009, 20: 1792.

[23]

Karanikolopoulos N., Pitsikalis M., Hadjichristidis N., Georgikopoulou K., Calogeropoulou T., Dunlap J. R. Langmuir, 2007, 23: 4214.

[24]

Blanazs A., Warren N. J., Lewis A. L., Armes S. P., Ryan A. J. Soft Matter, 2011, 7: 6399.

[25]

Zhang J. Y., Xu J., Liu S. Y. J. Phys. Chem. B, 2008, 112: 11284.

[26]

Zhao C. W., He P., Xiao C. S., Gao X. Y., Zhuang X. L., Chen X. S. J. Colloid Interface Sci., 2011, 359: 436.

[27]

Sun T., Li Y. M., Zhang H. C., Li J. N., Xin F. F., Kong L., Hao A. Y. Colloid Surface A, 2011, 375: 87.

[28]

Zhang H. C., Sun L. Z., Liu Z. N., An W., Hao A. Y., Xin F. F., Shen J. Colloid Surface A, 2010, 358: 115.

[29]

Vo C. D., Rosselgong J., Armes S. P., Tirelli N. J. Polym. Sci. A, Polym. Chem., 2010, 48: 2032.

[30]

He E., Yue C. Y., Tam K. C. Langmuir, 2009, 25: 4892.

[31]

Dan K., Pan R., Ghosh S. Langmuir, 2011, 27: 612.

[32]

Lapienis G. Prog. Polym. Sci., 2009, 34: 852.

[33]

Pasut G., Veronese F. M. Adv. Drug Delivery Rev., 2009, 61: 1177.

[34]

Wei X. W., Gong C. Y., Gou M. Y., Fu S. Z., Guo Q. F., Shi S., Luo F., Guo G., Qiu L. Y., Qian Z. Y. Int. J. Pharm., 2009, 381: 1.

[35]

Angelova A., Angelov B., Mutafchieva R., Lesieur S., Couvreur P. Account. Chem. Res., 2011, 44: 147.

[36]

Tomasi S., le Roch M., Renault J., Corbel J. C., Uriac P., Carboni B., Moncoq D., Martin B., Delcros J. G. Bioorg. Medicinal. Chem. Letter, 1998, 8: 635.

[37]

Lebreton L., Jost E., Carboni B., Annat J., Vaultier M., Dutartre P., Renaut P. J. Med. Chem., 1999, 42: 4749.

[38]

Kean L. S., Adams A. B., Strobert E., Hendrix R., Gangappa S., Jones T. R., Shirasugi N., Rigby M. R., Hamby K., Jiang J., Bello H., Anderson D., Cardona K., Durham M. M., Pearson T. C., Larsen C. P. Am. J. Transplant, 2007, 7: 320.

[39]

Khomutov A. R., Keinanen T. A., Grigorenko N. A., Hyvonen M. T., Uimari A., Pietila M., Cerrada-Gimenez M., Simonian A. R., Khomutov M. A., Vepsalainen J., Alhonen L., Janne J. Mol. Biol., 2009, 43: 249.

[40]

le Berre L., Bruneau S., Naulet J., Renaudin K., Buzelin F., Usal C., Smit H., Condamine T., Soulillou J. P., Dantal J. J. Amer. Soc. Nephrol., 2009, 20: 57.

[41]

Evans C. G., Chang L., Gestwicki J. E. J. Med. Chem., 2010, 53: 4585.

[42]

Zhang W. Q., Shi L. Q., Ma R. J., An Y. L., Xu Y. L., Wu K. Macromolecules, 2005, 38: 8850.

[43]

Tian Y. Q., Watanabe K., Kong X. X., Abe J., Iyoda T. Macromolecules, 2002, 35: 3739.

[44]

Tian Y. Q., Chen C. Y., Yip H. L., Wu W. C., Chen W. C., Jen A. K. Y. Macromolecules, 2010, 43: 282.

[45]

Ren Y. R., Jiang X. S., Yin J. J. Polym. Sci. A, Polym. Chem., 2009, 47: 1292.

[46]

Pinol R., Jia L., Gubellini F., Levy D., Albouy P. A., Keller P., Cao A., Li M. H. Macromolecules, 2007, 40: 5625.

[47]

Kim M. S., Hwang S. J., Han J. K., Choi E. K., Park H. J., Kim J. S., Lee D. S. Macromol. Rapid. Commun., 2006, 27: 447.

[48]

Zhu Y. J., Tan Y. B., Du X., Piao J. C., Zhou Q. F. Chin. Chem. Lett., 2008, 19: 355.

[49]

Li M., Li G. L., Zhang Z. G., Li J., Neoh K. G., Kang E. T. Polymer, 2010, 51: 3377.

[50]

Discher B. M., Won Y. Y., Ege D. S., Lee J. C. M., Bates F. S., Discher D. E., Hammer D. A. Science, 1999, 284: 1143.

[51]

Zhang J. Q., Wang Y. S., He Y., Jiang T., Yang H. M., Tan X., Kang R. H., Yuan Y. K., Shi L. F. Anal. Biochem., 2010, 397: 212.

[52]

Li L., Pan Q. A., Xiong S. D., Xu Z. S., Song G. W. J. Fluorine Chem., 2011, 132: 35.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/