Optimization of electrolyte conductivity for Li-ion batteries based on mass triangle model

Yong-huan Ren , Bo-rong Wu , Dao-bin Mu , Chun-wei Yang , Cun-zhong Zhang , Feng Wu

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 116 -120.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 116 -120. DOI: 10.1007/s40242-013-2179-7
Article

Optimization of electrolyte conductivity for Li-ion batteries based on mass triangle model

Author information +
History +
PDF

Abstract

Mass triangle model was applied to lithium ion battery for electrolyte conductivity forecasting. Seven kinds of electrolytes with different proportions of 3 solvents were prepared. The solvent proportions of the seven electrolytes varied so as to make the seven coordinate points distribute in the ternary coordinate system to form a forcasting region by the connection of them. Their conductivities were tested and the conductivity value in the forecasting region was calculated based on the tested value by mass triangle model. Conductivity isolines formed in the region and blank area showing no forecasted value existed simultaneously. Optimized electrolyte with superior conductivity was selected according to conductivity variation trendency combined with the attention paid to the no-value-shown blank area. The conductivity of optimized electrolyte{m[ethyl carbonate(EC)]:m[propylene carbonate(PC)]:m[ethylmethyl carbonate(EMC)]=0.19:0.22:0.59} was 0.745 mS/cm at −40 °C, increased by a factor of 51.4% compared to 0.492 mS/cm of common electrolyte[m(EC):m(PC):m(EMC)=1:1:1]. The accuracy of mass triangle model was demonstrated from the perspective that the maximum value existed in the blank area. Batteries with this optimized electrolyte exhibited a better performance.

Keywords

Mass triangle model / Low temperature / Li-ion battery / Electrolyte

Cite this article

Download citation ▾
Yong-huan Ren, Bo-rong Wu, Dao-bin Mu, Chun-wei Yang, Cun-zhong Zhang, Feng Wu. Optimization of electrolyte conductivity for Li-ion batteries based on mass triangle model. Chemical Research in Chinese Universities, 2013, 29(1): 116-120 DOI:10.1007/s40242-013-2179-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liao X. Z., Ma Z. F., Gong Q., He Y. S., Li P., Zeng L. J. Electrochemistry Communications, 2008, 10: 691.

[2]

Xiao L. F., Cao Y. L., Ai X. P., Yang H. X. Electrochimica Acta, 2004, 49: 4857.

[3]

Zhang S. S., Xu K., Jow T. R. Journal of Power Sources, 2003, 115: 137.

[4]

Chen Y. G., Wang C. G., Zhang X. Y., Xie D. M., Wang R. S. Chem. Res. Chinese Universities, 2004, 20(1): 7.

[5]

Schmitz R., Schmitz R., Müller R., Kazakova O., Kalinovich N., Röschenthaler G. V., Winter M., Passerini S., Lex-Balducci A. Journal of Power Sources, 2012, 205: 408.

[6]

Liu Z., Lucht B. L. Journal of Power Sources, 2012, 205: 439.

[7]

Wang X. J., Lee H. S., Li H., Yang X. Q., Huang X. J. Electrochemistry Communications, 2010, 12: 386.

[8]

Nawada H. P., Sreedharan O. M. Journal of Nuclear Materials, 1999, 273: 37.

[9]

Jiran E., Jacob K. T. Metallurgical Transactions A, 1986, 17A: 1102.

[10]

Cahen S., David N., Fiorani J. M., Maitre A., Vilasi M. Thermochimica Acta, 2003, 403: 275.

[11]

Chou K. C., Zhong X. M., Xu K. D. Metallurgical and Materials Transactions B, 2004, 35B: 715.

[12]

Wang L. J., Chou K. C., Seetharaman S. Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32: 49.

[13]

Huang J. Y., Yu B. T., Li F. S., Qiu W. H. International Journal of Minerals, Metallurgy and Materials, 2009, 16: 463.

[14]

Lück R., Gerling U., Predel B. Zeitschrift Fur Metallkunde, 1986, 77: 442.

[15]

Zhou G. Z., Chou K. C. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 1987, 11: 143.

[16]

Ansara I. International Materials Reviews, 1979, 24: 20.

[17]

Zivkovic D., Milosavljevic A., Mitovski A., Marjanovic B. Journal of Thermal Analysis and Calorimetry, 2007, 89: 137.

[18]

Xiang H. F., Chen C. H., Zhang J., Amine K. Journal of Power Sources, 2010, 195: 604.

[19]

Smart M. C., Ratnakumar B. V., Whitcanack L. D., Chin K. B., Surampudi S., Croft H., Tice D., Staniewicz R. Journal of Power Sources, 2003, 119-121: 349.

[20]

Cha M., Jung C. Journal of Applied Electrochemistry, 2009, 39: 955.

[21]

Jow T. R., Ding M. S., Xu K., Zhang S. S., Allen J. L., Amine K., Henriksen G. L. Journal of Power Sources, 2003, 119-121: 343.

[22]

Sergey N., Shkerin I. A., Profatilova S. R. Ionics, 2009, 15: 761.

[23]

Plichta E. J., Behl W. K. Journal of Power Sources, 2000, 88: 192.

[24]

Xu M. Q., Li W. S., Zuo X. X., Liu J. S., Xu X. Journal of Power Sources, 2007, 174: 705.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/