Microhydration of alanine in gas phase studied by quantum chemical method and ABEEMσπ/MM fluctuating charge model

Li-nan Lu , Cui Liu , Li-dong Gong

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 344 -350.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 344 -350. DOI: 10.1007/s40242-013-2158-z
Articles

Microhydration of alanine in gas phase studied by quantum chemical method and ABEEMσπ/MM fluctuating charge model

Author information +
History +
PDF

Abstract

A fluctuating charge interaction potential function for alanine-water was constructed in the spirit of newly developed ABEEMσπ/MM(atom-bond electronegativity equalization method at the σπ level fused into molecular mechanics). The properties of gaseous neutral alanine-(H2O) n(n=1–7) clusters were systematically investigated by quantum mechanics(QM) and the constructed ABEEMσπ/MM potential, such as conformations, hydrogen bonds (H-bonds), interaction energies, charge distributions, and so on. The results of ABEEMσπ/MM model are in fair agreement with those of QM and available experimental data. For isolated alanine, compared with those of experimental structure, the average absolute deviations(AAD) of bond length and bond angle are 0.002 nm and 1.4°, respectively. For alanine-water clusters, the AAD of interaction energies and H-bond lengths are only 3.77 kJ/mol and 0.012 nm, respectively, compared to the results of MP2/aug-cc-pVDZ//MP2/6-311+G** method. The ABEEMσπ charges fluctuate with the changing conformation of the system, and can accurately and reasonably reflect the interpolarization between water and alanine. The presented alanine-water potential function may provide a basis for further simulations on related aqueous solutions of biomolecules.

Keywords

Alanine-water cluster / ABEEMσπ/MM fluctuating charge model / Quantum chemical calculation / Hydrogen bond / Interaction energy

Cite this article

Download citation ▾
Li-nan Lu, Cui Liu, Li-dong Gong. Microhydration of alanine in gas phase studied by quantum chemical method and ABEEMσπ/MM fluctuating charge model. Chemical Research in Chinese Universities, 2013, 29(2): 344-350 DOI:10.1007/s40242-013-2158-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albrecht G., Corey R. B. J. Am. Chem. Soc., 1939, 61: 1087.

[2]

Gontrani L., Mennucci B., Tomasi J. J. Mol. Struct. (Theochem.), 2000, 500: 113.

[3]

Jensen J. H., Gordon M. S. J. Am. Chem. Soc., 1995, 117: 8159.

[4]

Ahn D. S., Park S. W., Jeon I. S., Lee M. K., Kim N. H., Han Y. H., Lee S. J. Phys. Chem. B, 2003, 107: 14109.

[5]

Mullin J. M., Gordon M. S. J. Phys. Chem. B, 2009, 113: 8657.

[6]

Zhang H. T., Zhou Z. Y., Shi Y. J. Phys. Chem. A, 2004, 108: 6735.

[7]

Chuchev K., BelBrouno J. J. J. Mol. Struct.(Theochem.), 2008, 850: 111.

[8]

Vyas N., Ojha A. K. J. Mol. Struct.(Theochem.), 2010, 940: 95.

[9]

Chaudhari A., Sahu P. K., Lee S. L. J. Mol. Struct.(Theochem.), 2004, 683: 115.

[10]

Leverentz H. R., Gao J., Truhlar D. G. Theor. Chem. Acc., 2011, 129: 3.

[11]

Patel S., Mackerell A. D., Brooks C. L. J. Comput. Chem., 2004, 25: 1504.

[12]

Lamoureux G., MacKerell A. D., Roux B. J. Chem. Phys., 2003, 119: 5185.

[13]

Yu H., Whitfield T. W., Harder E., Lamoureux G., Vorobyov I., Anisimov V. M., MacKerell A. D., Roux B. J. Chem. Theor. Comput., 2010, 6: 774.

[14]

Vorobyov I. V., Anisimov V. M., MacKerell A. D. J. Phys. Chem. B, 2005, 109: 18988.

[15]

Chelli R., Schettino V., Procacci P. J. Chem. Phys., 2005, 122: 234107.

[16]

Chelli R., Procacci P. J. Chem. Phys., 2002, 117: 9175.

[17]

Yang Z. Z., Wang C. S. J. Phys. Chem. A, 1997, 101: 6315.

[18]

Wang C. S., Yang Z. Z. J. Chem. Phys., 1999, 110: 6189.

[19]

Yang Z. Z., Cui B. C. J. Chem. Theory. Comput., 2007, 3: 1561.

[20]

Wang C. S., Sun R. A., Yang Z. Z. Chem. J. Chinese Universities, 1997, 18(8): 1353.

[21]

Yang Z. Z., Cong Y., Wang C. S. Chem. J. Chinese Universities, 1999, 20(11): 1781.

[22]

Xiao H. Y., Yang Z. Z. Chem. J. Chinese Universities, 2005, 26(10): 1886.

[23]

Li M. N., Yang Z. Z. Chem. J. Chinese Universities, 2005, 26(11): 2082.

[24]

Zhang Y. L., Yang Z. Z. Chem. J. Chinese Universities, 2006, 27(10): 1941.

[25]

Yang Z. Z., Li Y., Gong L. D., Zhao D. X. Chem. J. Chinese Universities, 2009, 30(8): 1600.

[26]

Yang Z. Z., Wu Y., Zhao D. X. J. Chem. Phys., 2004, 120: 2541.

[27]

Wu Y., Yang Z. Z. J. Phys. Chem. A, 2004, 108: 7563.

[28]

Qian P., Lu L. N., Song W., Yang Z. Z. Theor. Chem. Acc., 2009, 123: 487.

[29]

Yang Z. Z., Li X. J. Phys. Chem. A, 2005, 109: 3517.

[30]

Yang Z. Z., Li X. J. Chem. Phys., 2005, 123: 094507.

[31]

Zhang Q., Yang Z. Z. Chem. Phys. Lett., 2005, 403: 242.

[32]

Yu C. Y., Yu Y., Gong L. D., Yang Z. Z. Theor. Chem. Acc., 2012, 131: 1098.

[33]

Yang Z. Z., Zhang Q. J. Comput. Chem., 2006, 27: 1.

[34]

Wang F. F., Zhao D. X., Gong L. D. Theor. Chem. Acc., 2009, 124: 139.

[35]

Zhao D. X., Liu C., Wang F. F., Yu C. Y., Gong L. D., Liu S. B., Yang Z. Z. J. Chem. Theor. Comput., 2010, 6: 795.

[36]

Liu C., Zhao D. X., Yang Z. Z. J. Theor. Comput. Chem., 2010, 9: 77.

[37]

Cui B. Q., Guang Q. M., Gong L. D., Zhao D. X., Yang Z. Z. Chem. J. Chinese Universities, 2008, 29(3): 585.

[38]

Zhang W. L., Chen S. L., Yang Z. Z. Chem. J. Chinese Universities, 2010, 31(8): 1630.

[39]

Huo H. J., Zhao D. X., Yang Z. Z. Chem. J. Chinese Universities, 2011, 32(12): 2877.

[40]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. J., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, 2004, Wallingford CT: Gaussian Inc.

[41]

Jorgensen W. L., Maxwell D. S., Tirado-Rives J. J. Am. Chem. Soc., 1996, 118: 11225.

[42]

Kaminski G. A., Friesner R. A., Tirado-Rives J., Jorgensen W. L. J. Phys. Chem. B, 2001, 105: 6474.

[43]

Godfrey P. D., Firth S., Hatherley L. D., Brown R. D., Pierlot A. P. J. Am. Chem. Soc., 1993, 115: 9687.

[44]

Csaszar A. G. J. Mol. Struct., 1995, 346: 141.

[45]

Gronert S., O’Hair R. A. J. Am. Chem. Soc., 1995, 117: 2071.

[46]

Csaszar A. G. J. Mol. Struct., 1995, 346: 141.

[47]

Lijima K., Beagley B. J. Mol. Struct., 1991, 248: 133.

[48]

Godfrey P. D., Firth S., Hatherley L. D., Brown R. D., Pierlot A. P. J. Am. Chem. Soc., 1993, 115: 9687.

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/