Theoretical studies on structure, isomerization, and stability of [Si, O, S]

Ying-tao Liu , Xin Wang , Xiang-yu Liu , Xiao-ping Li , Yong-qiang Ji

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 351 -354.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 351 -354. DOI: 10.1007/s40242-013-2154-3
Articles

Theoretical studies on structure, isomerization, and stability of [Si, O, S]

Author information +
History +
PDF

Abstract

The structures, energetics, and isomerization of a possible interstellar [Si, O, S] system were explored at the CCSD(T)/aug-cc-pVQZ//CCSD(T)/aug-cc-pVTZ level. On the schemaitc potential energy surface(PES), we found that silicon oxysulfide(OSiS) produced in laboratory is the global minimum. An analysis of the Wiberg bond index(WBI), bond order and the bond length, shows that silicon oxysulfide contains SiO and SiS double bonds in accordance with the results of Schnöckel. Besides silicon oxysulfide, another interesting cyclic minimum(c-SiOS) was found to have a very high kinetic stability stabilized by the least barrier of 120.9 kJ/mol. In light of the fact that no cyclic sulfide-containing species has been detected in space, c-SiOS could be a very promising candidate. The presented results might provide useful information on detected interstellar molecules O=Si=S and c-SiOS.

Keywords

heoretical study / Structure / Schemaitc potential energy surface / Stability / [Si, O, S]

Cite this article

Download citation ▾
Ying-tao Liu, Xin Wang, Xiang-yu Liu, Xiao-ping Li, Yong-qiang Ji. Theoretical studies on structure, isomerization, and stability of [Si, O, S]. Chemical Research in Chinese Universities, 2013, 29(2): 351-354 DOI:10.1007/s40242-013-2154-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kaiser R. I. Chem. Rev., 2002, 102: 1309.

[2]

Golubiatnikov G. Y., Lapinov A.V., Guarnieri A., Knöchel R. J. Mol. Spectrosc., 2005, 234(1): 190.

[3]

Toth R. A., Sung K., Brown L. R., Crawford J. J. Quant. Spectrosc. Radiat. Transfer., 2010, 111: 1193.

[4]

Schnöckel H. Angew. Chem., Int. Ed., 1980, 19: 323.

[5]

Thorwirth S., Mück L. A., Gauss J., Tamassia F., Lattanzi V., McCarthy M. C. J. Phys. Chem. Lett., 2011, 2(11): 1228.

[6]

Bhattacharyya A. A., Bhattacharyya A., Oleksik J. J., Turner A. G. Inorg. Chim. Acta, 1981, 53: L163.

[7]

Zhou Z. J., Liu H. L., Huang X. R., Sun C. C. Chem. J. Chinese Universities, 2008, 29(8): 1641.

[8]

Pople J. A., Head-Gordon M., Raghavachari K. J. Chem. Phys., 1987, 87: 5968.

[9]

Cui Z. H., Contreras M., Ding Y. H., Merino G. J. Am. Chem. Soc., 2011, 133(34): 13228.

[10]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E. Jr., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09 Revision A.02, 2009, Wallingford CT: Gaussian Inc.

[11]

Reed A. E., Weinstock R. B., Weinhold F. J. Chem. Phys., 1985, 83(2): 735.

[12]

Reed A. E., Weinstock R. B., Weinhold F. J. Chem. Phys., 1985, 83(4): 1736.

[13]

Reed A. E., Curitss L. A., Weinhold F. Chem. Rev., 1988, 88(6): 899.

[14]

Paukstis S. J., Gole J. L., Dixon D. A., Peterson K. A. J. Phys. Chem. A, 2002, 106(36): 8435.

[15]

Yu J. K., Chen G. H., Huang X. R., Li Z., Sun C. C. Chem. J. Chinese Universities, 2005, 26(5): 894.

[16]

Chen G. H., Huang X. R., Sun C. C. Chem. J. Chinese Universities, 2004, 25(2): 313.

[17]

Chen G. H., Ding Y. H., Huang X. R., Yu J. K., Sun C. C. J. Chem. Phys., 2004, 120(18): 8512.

[18]

Zhou Z. J., Liu H. L., Huang X. R., Sun C. C. J. Mol. Struct. (Theochem.), 2008, 848: 74.

[19]

Schnockel H. Angew. Chem., 1978, 90: 638.

[20]

Schnockel H. Angew. Chem. Int. Ed., 1978, 17: 616.

[21]

Schnockel H. Z. Anorg. Allg. Chem., 1980, 460: 37.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/