Molecular design of TPD-based organic A-π-D-π-A dyes for dye-sensitized solar cells

Xing-bo Cao

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 355 -360.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 355 -360. DOI: 10.1007/s40242-013-2149-0
Articles

Molecular design of TPD-based organic A-π-D-π-A dyes for dye-sensitized solar cells

Author information +
History +
PDF

Abstract

An interesitng class of organic A-π-D-π-A dyes based on an N,N,N′,N′-tetraphenylbenzidine(TPD) unit as donor was designed and synthesized for dye-sensitized solar cells(DSSCs). TPD-4-based DSSCs gave a short circuit photocurrent density(J sc) of 16.67 mA/cm2, a open circuit voltage(V oc) of 0.635 V and a fill factor(ff) of 0.68, achieving a solar-to-electricity conversion efficiency(η) of 7.22% in preliminary tests. The N3-sensitized device gave an η value of 8.02% with a J sc of 18.81 mA/cm2, a V oc of 0.630 V and an ff of 0.68 under the same conditions. The incident photo-to-current efficiency(IPCE) values above 70% observed in a range of 460 to 600 nm with a maximum value of 80% at 500 nm indicate that the TPD-4-based DSSC shows a high performance. Under the same conditions, the DSSC based on N3 provided the IPCE values above 70% in a range of 490 to 580 nm with a maximum value of 76% at 500 nm. Both further optimization of the device processing and structural modification of these dyes are anticipated to make the device give even better performances.

Keywords

N,N,N′,N′-Tetraphenylbenzidine(TPD) unit / Dye-sensitized solar cell / Solar-to-electricity conversion efficiency

Cite this article

Download citation ▾
Xing-bo Cao. Molecular design of TPD-based organic A-π-D-π-A dyes for dye-sensitized solar cells. Chemical Research in Chinese Universities, 2013, 29(2): 355-360 DOI:10.1007/s40242-013-2149-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Regan B., Grätzel M. Nature, 1991, 353: 737.

[2]

Grätzel M. Nature, 2001, 414: 338.

[3]

Nazeeruddin M. K., Pechy P., Renouard T., Zakeeruddin S. M., Humphry-Baker R., Comte P., Liska P., Cevey L., Costa E., Shklover V., Spiccia L., Deacon G. B., Bignozzi C. A., Grätzel M. J. Am. Chem. Soc., 2001, 123: 1613.

[4]

Grätzel M. J. Photochem. Photobiol. A, 2004, 164: 3.

[5]

Chen Z., Li F., Huang C. Curr. Org. Chem., 2007, 11: 1241.

[6]

Burke A., Schmidt-Mende L., Ito S., Grätzel M., Chem. Commun., 2007, (3), 234.

[7]

Sayama K., Hara K., Mori N., Satsuki M., Suga S., Tsukagoshi S., Abe Y., Sugihara H., Arakawa H., Chem. Commun., 2000, 1173.

[8]

Horiuchi T., Miura H., Sumioka K., Uchida S. J. Am. Chem. Soc., 2004, 126: 12218.

[9]

Qin H., Wenger S., Xu M., Gao F., Jing X., Wang P., Zakeeruddin S. M., Grätzel M. J. Am. Chem. Soc., 2008, 130: 9202.

[10]

Hara K., Wang Z. S., Sato T., Furube A., Katoh R., Sugihara H., Dan-oh Y., Kasada C., Shinpo A., Suga S. J. Phys. Chem. B, 2005, 109: 15476.

[11]

Li G., Jiang K. J., Li Y. F., Li S. L., Yang L. M. J. Phys. Chem. C, 2008, 112: 11591.

[12]

Zhang L., Ren Y. J., Zhang Z. C., Fang S. B., Tian H., Cai S. M. Chem. J. Chinese Universities, 2001, 22(7): 1105.

[13]

Zhang J., Li H. B., Wu Y., Geng Y., Duan Y. A., Liao Y., Su Z. M. Chem. J. Chinese Universities, 2011, 32(6): 1343.

[14]

Tian H., Yang X., Pan J., Chen R., Liu M., Zhang Q., Hagfeldt A., Sun L. Adv. Funct. Mater., 2008, 18: 3461.

[15]

Li G., Zhou Y. F., Cao X. B., Bao P., Jiang K. J., Lin Y., Yang L. M., Chem. Commun., 2009, 2201.

[16]

Tao S. L., Zhou Y. C., Lee C. S., Lee S. T., Huang D., Zhang X. H. J. Mater. Chem., 2008, 18: 3981.

[17]

Lin T. C., He G. S., Parasad P. N., Tan L. S. J. Mater. Chem., 2004, 14: 982.

[18]

Ito S., Liska P., Comte P., Charvet R., Péchy P., Bach U., Schmidt-Mende L., Zakeeruddin S. M., Nazeeruddin M. K., Grätzel M., Chem. Commun., 2005, (34), 4351.

[19]

Horiuchi T., Miura H., Sumioka K., Uchida S. J. Am. Chem. Soc., 2004, 126: 12218.

[20]

Klene N. M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zaktin V. G., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzrzewski C., Dapprich S., Daniels A. M., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Maralez R. L., Pople J. A. Gaussian 03 Revision B. 03, 2003, Pittsburgh PA: Gaussian, Inc.

[21]

Klein C., Nazeeruddin M. K., Censo D. D., Liska P., Grätzel M. Inorg. Chem., 2004, 43: 4216.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/