Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: Kinetic and equilibrium studies

Wei-wei Bao , Hai-feng Zou , Shu-cai Gan , Xue-chun Xu , Gui-juan Ji , Ke-yan Zheng

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 126 -131.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 126 -131. DOI: 10.1007/s40242-013-2139-2
Article

Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: Kinetic and equilibrium studies

Author information +
History +
PDF

Abstract

Na-A zeolite was successfully synthesized via the alkaline fusion method with oil shale ash as the raw material. The adsorption capacity of it was tested by removing Cu2+, Ni2+, Pb2+ and Cd2+ from aqueous solutions. The results reveal the maximum adsorption capacity of adsorbent for Pb2+, Cu2+, Cd2+ and Ni2+ were 224.72, 156.74, 118.34 and 53.02 mg/g, respectively. The effects of contact time and pH value of solutions on the adsorption efficiency of the zeolite were evaluated. Besides, The equilibrium adsorption data and the batch kinetic data were correlated with Langmuir and Freundlich models and the pseudo-first-order and pseudo-second-order models separately. The results show that the Langmuir isotherm and the pseudo-second-order equation were more suitable for the adsorption of Na-A zeolite for the metal ions. In addition, Thermodynamic parameters of the adsorption(the Gibbs free energy, entropy, and enthalpy) were also evaluated and discussed. The results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions and the synthesized zeolite was an effective adsorbent for the removal of metal ions from aqueous solution.

Keywords

Oil shale ash / Zeolite / Heavy metal ion / Kinetic / Adsorption isotherm

Cite this article

Download citation ▾
Wei-wei Bao, Hai-feng Zou, Shu-cai Gan, Xue-chun Xu, Gui-juan Ji, Ke-yan Zheng. Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: Kinetic and equilibrium studies. Chemical Research in Chinese Universities, 2013, 29(1): 126-131 DOI:10.1007/s40242-013-2139-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pehlivan E., Arslan G. Fuel Process. Technol., 2007, 88: 99.

[2]

Miretzky P., Saralegui A., Cirelli A. F. Chemosphere, 2006, 62: 247.

[3]

Kumar A., Rao N. N., Kaul S. N. Bioresource Technol., 2000, 71: 133.

[4]

Smadi M. M., Haddad R. H. Cement Concrete Comp., 2003, 25: 43.

[5]

Shawabkeh R., Al-Harahsheh A., Hami M., Khlaifat A. Fuel, 2004, 83: 981.

[6]

Shawabkeh R. Process. Saf. Environ., 2009, 87: 261.

[7]

Fernandes-Machado N. R. C., Miotto D. M. M. Fuel, 2005, 84: 2289.

[8]

Wang C., Li J., Sun X., Wang L., Sun X. J. Environ. Sci., 2009, 21: 127.

[9]

Tran H. V., Tran L. D., Nguyen T. N. Mat. Sci. Eng. C, 2010, 30: 304.

[10]

Zhao X., Song N., Jia Q., Zhou W. Ind. Eng. Chem. Res., 2011, 50: 4625.

[11]

Zhang G., Xue H., Tang X., Peng F., Kang C. Chem. Res. Chinese Universities, 2011, 27(6): 1035.

[12]

Su T., Li A., Luan J. J. Saf. Environ., 2009, 9: 53.

[13]

Lu M., Guan X., Wei D. Chem. Res. Chinese Universities, 2011, 27(6): 1031.

[14]

Ho Y. S., McKay G. Process Biochem., 1999, 34: 451.

[15]

Niwas R., Gupta U., Khan A. A., Varshney K. G. Colloids Surf. A, 2000, 164: 115.

[16]

Yu Y., Zhuang Y. Y., Wang Z. H. J. Colloid Interf. Sci., 2001, 242: 288.

[17]

Yavuz O., Altunkaynak Y., Guzel F. Water Res., 2003, 37: 948.

[18]

Lv L., Hor M. P., Su F., Zhao X. S. J. Colloid Interf. Sci., 2005, 287: 178.

[19]

Nightingale E. R. Jr. J. Phys. Chem., 1959, 63: 1381.

[20]

Ricordel S., Taha S., Cisse I., Dorange G. Sep. Purif. Technol., 2001, 24: 389.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/