TD-DFT studies on electronic and spectral properties of platinum(II) complexes with phenol and pyridine groups

Shan-shan Zhao , Li-li Shi , Zhong-min Su , Yun Geng , Liang Zhao

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 361 -365.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (2) : 361 -365. DOI: 10.1007/s40242-013-2138-3
Articles

TD-DFT studies on electronic and spectral properties of platinum(II) complexes with phenol and pyridine groups

Author information +
History +
PDF

Abstract

The molecular structures of the ground and the lowest triplet states for a series of Pt(II) complexes PtLCl(1)[L=6-(2-hydroxyphenyl)-2,2′-bipyridine], Pt(pp)2[pp=2-(2-hydroxyphenyl)pyridine](2), PtbpyCl2(bpy=2,2′-bipyridine)(3), and the free tridentate L ligand(4) were optimized by the density functional theory B3LYP and UB3LYP methods, respectively. On the basis of optimized geometries, the spectral properties were investigated with time-dependent density functional theory(TD-DFT). In comparison with those of complexes 2 and 3, the more rigid structure of complex 1 together with its low rate of the radiationless decay via nonemissive d-d state leads to higher photoluminescence quantum efficiency. And the phosphorescence quantum efficiency of complex 1 can be easily controlled by modifying auxiliary ligands. The introduction of fluorine ligand into complexes can effectively increase the radiation transition rate and decrease the radiationless d-d transition rate, and as a result, a novel complex PtLF(5) might be a good phosphorescent material suitable for organic electronic devices.

Keywords

Pt(II) complex / Time-dependent density functional theory(TD-DFT) / Optoelectronic property

Cite this article

Download citation ▾
Shan-shan Zhao, Li-li Shi, Zhong-min Su, Yun Geng, Liang Zhao. TD-DFT studies on electronic and spectral properties of platinum(II) complexes with phenol and pyridine groups. Chemical Research in Chinese Universities, 2013, 29(2): 361-365 DOI:10.1007/s40242-013-2138-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Welter S., Brunner K., Hofstraat J. W., DeCola L. Nature, 2003, 421: 54.

[2]

Tsuboyama A., Iwawaki H., Furugori M., Mukaide T., Kamatani J., Igawa S., Moriyama T., Miura S., Takiguchi T., Okada S., Hoshino M., Ueno K. J. Am. Chem. Soc., 2003, 125(42): 12971.

[3]

Williams J. A. G., Develay S., Rochester D. L., Murphy L. Coord. Chem. Rev., 2008, 252(23): 2596.

[4]

Tokito S., Iijima T., Tsuzuki T., Sato F. Appl. Phys. Lett., 2003, 83(12): 2459.

[5]

Su Y. J., Huang H. L., Li C. L., Chien C. H., Tao Y. T., Chou P. T., Datta S., Liu R. S. Adv. Mater., 2003, 15(11): 884.

[6]

Koo C. K., Ho Y. M., Chow C. F., Wah Lam M. H., Lau T. C., Wong W. Y. Inorg. Chem., 2007, 46(9): 3603.

[7]

Williams J. A. G., Beeby A., Davies E. S., Weinstein J. A., Wilson C. Inorg. Chem., 2003, 42(26): 8609.

[8]

Koo C. K., Lam B., Leung S. K., Wah Lam M. H., Wong W. Y. A. J. Am. Chem. Soc., 2006, 128(51): 16434.

[9]

Baldo M. A., O’Brien D. F., You Y., Shoustikov A., Sibley S., Thompson M. E., Forrest S. R. Nature, 1998, 395: 151.

[10]

Lamansky S., Djurovich P., Murphy D., Abdel-Razzaq F., Lee H. E., Adachi C., Burrows P. E., Forrest S. R., Thompson M. E. J. Am. Chem. Soc., 2001, 123(18): 4304.

[11]

Adachi C., Baldo M. A., Thompson M. E., Forrest S. R. J. Appl. Phys., 2001, 90(10): 5048.

[12]

Liang C., Fu H., Lu Y., Li Y. G., Wang E. B. Chem. J. Chinese Universities, 2011, 32(9): 2198.

[13]

Cocchi M., Virgili D., Fattori V., Williams J. A. G., Kalinowski J. Appl. Phys. Lett., 2007, 90(2): 23506.

[14]

Virgili D., Cocchi M., Fattori V., Sabatini C., Kalinowski J., Williams J. A. G. Chem. Phys. Lett., 2006, 433(1): 145.

[15]

Kalinowski J., Cocchi M., Virgili D., Tattori V., Williams J. A. G. Adv. Mater., 2007, 19(22): 4000.

[16]

Lu W., Mi B. X., Chan M. C. W., Hui Z., Che C. M., Zhu N., Lee S. T. J. Am. Chem. Soc., 2004, 126(15): 4958.

[17]

Lu W., Chui S. S. Y., Ng K. M., Che C. M. Angew. Chem. Int. Ed., 2008, 47(24): 4568.

[18]

Zhou X., Pan Q. J., Xia B. H., Li M. X., Zhang H. X., Tung A. C. J. Phys. Chem. A, 2007, 111(25): 5465.

[19]

Liu X. D., Feng J. K., Ren A. M., Yang B., Xu H. Chem. J. Chinese Universities, 2008, 29(3): 600.

[20]

Yip H. K., Cheng L. K., Cheung K. K., Che C. M., J. Chem. Soc. Dalton Trans., 1993, (19), 2933.

[21]

Brooks J., Babayan Y., Lamansky S., Djurovichi P. I., Ysyba I., Bau R., Yhompson M. E. Inrog. Chem., 2002, 41(12): 3055.

[22]

Ma B., Li J., Djurovich P. I., Yousufuddin M., Bau R., Yhompson M. E. J. Am. Chem. Soc., 2005, 127(1): 28.

[23]

Yang C. H., Li S. W., Chi Y., Cheng Y. M., Yeh Y. S., Chou P. T., Lee G. H., Wang G. H., Shu C. F. Inorg. Chem., 2005, 44(22): 7770.

[24]

Chang S. Y., Kavitha J., Li S. W., Hsu C. S., Chi Y., Yeh Y. S., Chou P. T., Lee G. H., Carry A. J., Tao Y. T., Chien C. H. Inorg, Chem., 2006, 45(1): 137.

[25]

Kwok C. C., Ngai H. M. Y., Chan S. C., Sham I. H. T. C. C. M. Z. N. Inorg. Chem., 2005, 44(13): 4442.

[26]

Liao Y., Chen Y. C., Su Z. M., Kan Y. H., Duan H. X., Zhu D. X. Syn. Met., 2003, 137(1–3): 1093.

[27]

Hua F., Kinayyigit S., Rachford A. A., Shikhova E. A., Goeb S., Cable J. R., Adams C. J., Kirschbaum K., Pinkerton A. A., Castellano F. N. Inorg. Chem., 2007, 46(21): 8771.

[28]

Rachford A. A., Goeb S., Raymond Z., Castellano F. N. Inorg. Chem., 2008, 47(10): 4348.

[29]

Rachford A. A., Goeb S., Castellano F. N. J. Am. Chem. Soc., 2008, 130(9): 2766.

[30]

Goeb S., Rachford A. A., Castellano F. N., Chem. Comm., 2008, (7), 814.

[31]

Miskowski V. M., Houlding V. H. Inorg. Chem., 1989, 28(8): 1529.

[32]

Zhou X., Pan Q. J., Xia B. H., Li M. X., Zhang H. X., Tung A. C. J. Phys. Chem. A, 2007, 111(25): 5465.

[33]

Yang L., Feng J. K., Ren A. M. J. Mol. Struc.(Theochem.), 2006, 760(1–3): 193.

[34]

Zhou X., Zhang H. X., Pan Q., Xia B. H., Tang A. C. J. Phys. Chem. A, 2005, 109(39): 8809.

[35]

Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J. J. Phy. Chem., 1994, 98(45): 11623.

[36]

Becke A. D. J. Chem. Phys., 1993, 98(7): 5648.

[37]

Becke A. D. Phys. Rev. A, 1988, 38(6): 3098.

[38]

Lee C. T., Yang W. T., Parr R. G. Phys. Rev. B, 1988, 37(2): 785.

[39]

Casida M. K., Jamorski C., Casida K. C., Salahub D. R. J. Chem. Phys., 1998, 108(11): 4439.

[40]

Stratmann R. E., Scuseria G. E. J. Chem. Phys., 1998, 109(19): 8218.

[41]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Buran J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S. A., Daniels D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 03, Revision C. 02, 2004, Wallingford CT: Gaussian Inc.

[42]

Yang Q. Z., Wu L. Z., Wu Z. X., Zhang L. P., Tung C. H. Inorg. Chem., 2002, 41(22): 5653.

[43]

Michalec J. F., Bejune S. A., Cuttell D. G., Summerton G. C., Gertenbach J. A., Field J. S., Haines R. J., McMillin D. R. Inorg. Chem., 2001, 40(9): 2193.

[44]

Kan Y. H., Yang G. C., Yang S. Y., Zhang M., Lan Y. Q., Su Z. M. Chem. Phys. Lett., 2006, 418(4–6): 302.

[45]

Sotoyama W., Satoh T., Sato H., Matsuura A., Sawatari N. J. Phys. Chem. A, 2005, 109(43): 9760.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/