Adsorption of zinc and cyanide from cyanide effluents on anionic ion-exchange resin

Ya-li Zhang , Tao Fang , Xian-jin Yu

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 144 -149.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 144 -149. DOI: 10.1007/s40242-013-2070-6
Article

Adsorption of zinc and cyanide from cyanide effluents on anionic ion-exchange resin

Author information +
History +
PDF

Abstract

The adsorption of zinc and cyanide from cyanide effluents onto strong and weak basic anion exchange resins was studied in a batch adsorption system. Factors influencing the adsorption rates such as resin selection, resin amounts, contact time and temperature were studied and scanning electron microscopy-energy disperse spectroscopy( SEM-EDS) was used in the analysis. The present study shows that the adsorption capacity of resin 201×7 is better than that of resin 301. The adsorption process was relatively fast and came to equilibrium after 60 min. The kinetic data were analyzed with three models and the pseudo-second-order kinetic model was found to agree with the experimental data well. The equilibrium data could also be described well by Langmuir isotherm model. Thermodynamic parameters such as enthalpy change(ΔH 0), free energy change(ΔG 0) and entropy change(ΔS 0) were calculated and the adsorption process was spontaneous and endothermic.

Keywords

Ion-exchange / Adsorption / Adsorption isotherm / Adsorption kinetics / Thermodynamic parameter

Cite this article

Download citation ▾
Ya-li Zhang, Tao Fang, Xian-jin Yu. Adsorption of zinc and cyanide from cyanide effluents on anionic ion-exchange resin. Chemical Research in Chinese Universities, 2013, 29(1): 144-149 DOI:10.1007/s40242-013-2070-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yannopoulos J. C. The Extractive Metallurgy of Gold, 1991, New York: Van Nostrand Resinhold, 11.

[2]

Bachiller D., Torre M., Renddueles M. Miner. Eng., 2004, 17(6): 767.

[3]

Dai X., Breuer P. L., Jeffrey M. I. Hydrometallurgy, 2010, 101(1): 48.

[4]

Paraage J. R., Shukla S. S. Waste Manage., 2003, 23(2): 183.

[5]

White D. M. Water Res., 2000, 34(7): 2015.

[6]

Xiong C. H., Wang Y. J., Shi L. M. Chem. Res. Chinese Universities, 2003, 19(3): 366.

[7]

Xie F., Dreisinger D. Miner. Eng., 2009, 22(2): 190.

[8]

Han B. B., Shen Z. S., Wickramasinghe S. R. J. Membr. Biol., 2005, 257(2): 171.

[9]

Dai X., Breuer P. L. Miner. Eng., 2009, 22(5): 469.

[10]

Chen G. H., Zhang Y. S., Sun Y. G., Zhou F. J., Jiang S. G. Gold Science and Technology, 2011, 4(1): 74.

[11]

Meenakshi S., Viswanathan N. J. Colloid Interface Sci., 2007, 308(2): 438.

[12]

Shi T. H., Wang Z. C., Liu Y., Jia S. G., Du C. M. J. Hazard. Mater., 2009, 161(2/3): 900.

[13]

Kurama H., Catalsarik T. Desalination, 2000, 129(1): 1.

[14]

Bhattacharrya K. G., Gupta S. S. Eng. Asp., 2006, 277(1): 191.

[15]

Noeline B. F., Manohar D. M., Anirudhan T. S. Sep. Purif. Technol., 2005, 45(1): 131.

[16]

Zhang H., Yu X. J., Chen L., Geng J. Q. Radioanal. Nucl. Chem., 2010, 286(1): 249.

[17]

Gode F., Pehlivan E. J. Hazard. Mater., 2003, 100(1): 231.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/