Theoretical studies on structures and stabilities of C4H2 + isomers

Ying Zhao , Su-qin Wan , Hui-ling Liu , Xu-ri Huang , Chia-chung Sun

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 150 -153.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 150 -153. DOI: 10.1007/s40242-013-2060-8
Article

Theoretical studies on structures and stabilities of C4H2 + isomers

Author information +
History +
PDF

Abstract

The structures, energies, stabilities and spectroscopies of doublet C4H2 + cations were explored at the DFT/B3LYP/6-311G(d,p), CCSD(T)/6-311+G(2df,2pd)(single-point), and G3B3 levels. Ten minimum isomers including the chainlike, three-member-ring, and four-member-ring structures are interconverted by means of 15 interconversion transition states. The potential energy surface was investigated. At the CCSD(T)/6-311+G(2df,2pd) and G3B3 levels, the global minimum isomer was found to be a linear HCCCCH. The structures of the stable isomer and its relevant transition state are further optimized at the QCISD/6-311G(d,p) level. The bonding nature and structure of isomer HCCCCH were analyzed.

Keywords

C4H2 + / Potential energy surface / HCCCCH isomer

Cite this article

Download citation ▾
Ying Zhao, Su-qin Wan, Hui-ling Liu, Xu-ri Huang, Chia-chung Sun. Theoretical studies on structures and stabilities of C4H2 + isomers. Chemical Research in Chinese Universities, 2013, 29(1): 150-153 DOI:10.1007/s40242-013-2060-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Broadfoot A. L., Sandel B. R., Shemansky D. E., Holberg J. B., Smith G. R., Strobel D. F., McConnell J. C., Kumar S., Hunten D. M., Atreya S. K., Donahue T. M., Moos H. W., Bertaux J. L., Blamont J. E., Pomphrey R. B., Linick S. Science, 1981, 212: 206.

[2]

Hanel R., Conrath B., Flasar F. M., Kunde V., Maguire W., Pearl J., Pirraglia J., Samuelson R., Herath L., Allison M., Cruikshank D., Gautier D., Gierasch P., Horn L., Koppany R., Ponnamperuma C. Science, 1981, 212: 192.

[3]

Samuelson R., Nath N., Borysow A. Planet. Space Sci., 1997, 45: 959.

[4]

Raulin F. Space Sci. Rev., 2008, 135: 37.

[5]

Lavvas P. P. Planet. Space Sci., 2008, 56: 27.

[6]

Lebonnois S. Planet Space Sci., 2005, 53: 486.

[7]

Wilson E. H., Atreya S. K. J. Geophys. Res., 2004, 109: E06002.

[8]

Vuitton V., Yelle R. V., Cui J. J. Geophys. Res., 2008, 113: E05007.

[9]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision B. 03, 2004, Wallingford CT: Gaussian Inc.

[10]

Glendening E. D., Badenhoop J. K., Reed A. E., Carpenter J. E., Bohmann J. A., Morales C. M., Weinhold F. NBO 5.0, 2001, Madison WI: Theoretical Chemistry Institute of University of Wisconsin.

[11]

Becke A. D. J. Chem. Phys., 1993, 98: 5648.

[12]

McLean A. D., Chandler G. S. J. Chem. Phys., 1980, 72: 5639.

[13]

Krishnan R., Binkley J. S., Seeger R., Pople J. A. J. Chem. Phys., 1980, 72: 650.

[14]

Frisch M. J., Pople J. A., Binkley J. S. J. Chem. Phys., 1984, 80: 3265.

[15]

Gonzalez C., Schlegel H. B. J. Chem. Phys., 1989, 90: 2154.

[16]

Gonzalez C., Schlegel H. B. J. Chem. Phys., 1990, 94: 5523.

[17]

Pople J. A., Head-Gordon M., Raghavachari K. J. Chem. Phys., 1987, 87: 5968.

[18]

Curtiss L. A., Raghavachari K., Redfern P. C., Rassolov V., Pople J. A. J. Chem. Phys., 1998, 109: 7764.

[19]

Boboul A. G., Curtiss L. A., Redfern P. C., Raghavachari K. J. Chem. Phys., 1999, 110: 7650.

[20]

Gauss J., Cremer C. Chen. Phys. Lett., 1988, 150: 280.

[21]

Salter E. A., Trucks G. W., Bartlett R. J. J. Chem. Phys., 1989, 90: 1752.

[22]

Zhou Z. J., Liu H. L., Huang X. R., Sun C. C. Chem. J. Chinese Universities, 2008, 29(8): 1641.

[23]

Carrasco N., Dutuit O., Thissen R., Banaszkiewicz M., Pernot P. Planetary and Space Science, 2006, 55: 141.

[24]

Callomon J. H., Stoicheff B. P. Can. J. Phys., 1957, 35: 373.

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/