Theoretical studies on structures and stabilities of C4H2 + isomers
Ying Zhao , Su-qin Wan , Hui-ling Liu , Xu-ri Huang , Chia-chung Sun
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 150 -153.
Theoretical studies on structures and stabilities of C4H2 + isomers
The structures, energies, stabilities and spectroscopies of doublet C4H2 + cations were explored at the DFT/B3LYP/6-311G(d,p), CCSD(T)/6-311+G(2df,2pd)(single-point), and G3B3 levels. Ten minimum isomers including the chainlike, three-member-ring, and four-member-ring structures are interconverted by means of 15 interconversion transition states. The potential energy surface was investigated. At the CCSD(T)/6-311+G(2df,2pd) and G3B3 levels, the global minimum isomer was found to be a linear HCCCCH. The structures of the stable isomer and its relevant transition state are further optimized at the QCISD/6-311G(d,p) level. The bonding nature and structure of isomer HCCCCH were analyzed.
C4H2 + / Potential energy surface / HCCCCH isomer
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
/
| 〈 |
|
〉 |