Effect of molar ratio of citric acid to metal nitrate on the structure and catalytic activity of NiO nanoparticles

Gang Wu , Xiao-yan Tan , Gui-ying Li , Chang-wei Hu

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 154 -158.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 154 -158. DOI: 10.1007/s40242-013-2059-1
Article

Effect of molar ratio of citric acid to metal nitrate on the structure and catalytic activity of NiO nanoparticles

Author information +
History +
PDF

Abstract

NiO nanoparticles were prepared by means of sol-gel method via varying the ratio of citric acid to nickel nitrate. The samples were characterized by powder X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). It was found that the molar ratio of citric acid to nickel nitrate has a great effect on the crystal structure and particle size of NiO. The increase of the molar ratio of citric acid to nickel nitrate is favorable to the formation of NiO smaller particles within the range tested. Compared to bulk NiO obtained by thermal decomposition, NiO nanoparticles possess more surface oxygen species O. The activity test indicates that surface oxygen species O plays a crucial role in the hydroxylation of benzene to phenol with hydrogen peroxide as oxidant. The active site may be originated from Ni2+ on the surface of the samples, while Ni0 does not contribute to the hydroxylation reaction.

Keywords

Nanostructure / Sol-gel growth / X-Ray diffraction / Surface property

Cite this article

Download citation ▾
Gang Wu, Xiao-yan Tan, Gui-ying Li, Chang-wei Hu. Effect of molar ratio of citric acid to metal nitrate on the structure and catalytic activity of NiO nanoparticles. Chemical Research in Chinese Universities, 2013, 29(1): 154-158 DOI:10.1007/s40242-013-2059-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen C. C., Herhold A. B., Johnson C. S., Alivisatos A. P. Science, 1997, 276: 398.

[2]

Beach E. R., Shqau K. R., Brown S. E., Rozeveld S. J., Morris P. A. Mater. Chem. Phys., 2009, 115: 371.

[3]

Bi H., Li S. D., Zhang Y. C. J. Magn. Magn. Mater., 2004, 277: 363.

[4]

Farhadi S., Kazem M., Siadatnasab F. Polyhedron, 2011, 30: 606.

[5]

Sohn J. R., Han J. S. Appl. Catal. A, Gen., 2006, 298: 168.

[6]

Li J. F., Yan R., Xiao B., Liang D. T., Lee D. H. Energy Fuels, 2008, 22: 16.

[7]

Carnes C. L., Klabunde K. J. J. Mol. Catal. A, Chem., 2003, 194: 227.

[8]

Wu Y., Chen T., Cao X. D., Weng W. Z., Wan H. L. Chin. J. Catal., 2003, 24: 403.

[9]

Biju V., Khadar M. A. J. Mater. Sci., 2001, 36: 5779.

[10]

Maia A. O. G., Meneses C. T., Menezes A. S., Flores W. H., Melo D. M. A., Sasaki J. M. J. Non-Cryst. Solids, 2006, 352: 3729.

[11]

Ohta H., Hirano M., Nakahara K., Maruta H., Tanabe T., Kamiya M., Kamiya T., Hosono H. Appl. Phys. Lett., 2003, 83: 1029.

[12]

Aslani A., Oroojpour V., Fallahi M. Apppl. Surf. Sci., 2011, 257: 4056.

[13]

Komath M., Thomas S., Cherian K. A. Mater. Chem. Phys., 1993, 36: 190.

[14]

Hu X. K., Zhu L. F., Guo B., Liu Q. Y., Li G. Y., Hu C. W. Chem. Res. Chinese Universities, 2011, 27(3): 503.

[15]

Barbera D., Cavani F., D’Alessandro T., Fornasari G., Guidetti S., Aloise A., Giordano G., Piumetti M., Bonelli B., Zanzottera C. J. Catal., 2010, 275: 158.

[16]

Parida K. M., Rath D. Appl. Catal. A, Gen., 2007, 321: 101.

[17]

Miyahara T., Kanzaki H., Hamada R., Kuroiwa S., Nishiyama S., Tsuruya S. J. Mol. Catal. A, Chem., 2001, 176: 141.

[18]

Wu Y., He Y. M., Wu T. H., Chen T., Weng W. Z., Wan H. L. Mater. Lett., 2007, 61: 3174.

[19]

Liu J. H., Yu M., Li S. M. Chin. Mater. Eng., 2006, 1: 110.

[20]

Kanthimathi M., Dhathathreyan A., Nair B. U. Mater. Lett., 2004, 58: 2914.

[21]

Wang Y. P., Zhu J. W., Yang X. J., Lu L. D., Wang X. Thermochi. Acta, 2005, 437: 106.

[22]

van der Laan G. V., Westra C., Haas C., Sawatzky G. A. Phys. Rev. B, 1981, 23: 4369.

[23]

Fierro G., Jacono M. L., Inversi M., Dragone R., Porta P. Top Catal., 2000, 10: 39.

[24]

Naghash A. R., Etsell T. H., Xu S. Chem. Mater., 2006, 18: 2480.

[25]

Rao C. N. R., Vijayakrishnan V., Kulkarni G. U., Rajumon M. K. Appl. Surf. Sci., 1995, 84: 285.

[26]

Hegde M. S., Ayyoob M. Surf. Sci., 1986, 173: L635.

[27]

Fu Z. J., Chen T., Yu T. H., Hu C. W., Tian A. M. Chin. Gas Technol., 2003, 28: 14.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/