Preparation of optically active alkoxy-serines from amino-amide racemate catalyzed by Escherichia coli cells with peptidase B activity

Zhi-yuan Wang , Jun-zhong Liu , Li-sheng Xu , Hong-juan Zhang , Qian Liu , Qing-cai Jiao

Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 95 -98.

PDF
Chemical Research in Chinese Universities ›› 2013, Vol. 29 ›› Issue (1) : 95 -98. DOI: 10.1007/s40242-012-2249-2
Article

Preparation of optically active alkoxy-serines from amino-amide racemate catalyzed by Escherichia coli cells with peptidase B activity

Author information +
History +
PDF

Abstract

Alkoxy-L-serines are useful for peptide syntheses. The demand for alkoxy-L-serines in the pharmaceutical industries continues to increase because of their multiple physiological effects. In this research, an improved method for alkoxy-L-serines synthesis is reported. A series of substrates, DL-β-alkoxy-α-amino propionamides, was used for the synthesis of alkoxy-serines catalyzed by Escherichia coli cells with peptidase B(PepB) activity. The results show that PepB has a high resolution activity with DL-β-alkoxy-α-amino propionamides as substrate. Reaction conditions were optimized, i.e., DL-β-methoxy-α-amino propionamide as substrate at pH=9.0, 40 °C and 14 h, and the optimal reaction concentration is 400 mmol/L. The results also show that divalent metal cations exhibit different effects on the PepB activity, for example, Zn2+ and Cu2+ can obviously inhibit the activity of PepB, whereas Co2+, Ca2+, Mn2+ and Mg2+ at low concentrations can activate PepB. This research provides access to enantiomerically enriched and valuable alkoxy-L-serines from a simple amino-amide racemate.

Keywords

Alkoxy-serine / DL-β-Alkoxy-α-amino propionamide / Enzymatic resolution / Peptidase B

Cite this article

Download citation ▾
Zhi-yuan Wang, Jun-zhong Liu, Li-sheng Xu, Hong-juan Zhang, Qian Liu, Qing-cai Jiao. Preparation of optically active alkoxy-serines from amino-amide racemate catalyzed by Escherichia coli cells with peptidase B activity. Chemical Research in Chinese Universities, 2013, 29(1): 95-98 DOI:10.1007/s40242-012-2249-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reetz M. T. Angew. Chem. Int. Edit., 2001, 40: 284.

[2]

Andurkar S. V., Stables J. P., Kohn H. Tetrahedron: Asymmetry, 1998, 9: 3841.

[3]

Maruyama W., Naoi M., Narabayashi H. J. Neurol. Sci., 1996, 139: 141.

[4]

Wong C. H., Ho M. F., Wang K. T. J. Org. Chem., 1978, 18: 3604.

[5]

Apley M. Veterinary Clinics of North America—Food Animal Practice, 1997, 13: 575.

[6]

Okada Y. Curr. Org. Chem., 2001, 5: 1.

[7]

Hodges R. S., Merrifield R. B. J. Org. Chem., 1974, 13: 1870.

[8]

Gavatha M., Ioannou I., Papavasiliou A. S. Epileps & Behavior, 2011, 4: 725.

[9]

Wang Z. Y., Xu L. S., Liu J. Z., Zhang H. J., Gao J., Liu Q., Jiao Q. C. Chem. Res. Chinese Universities, 2012, 28(4): 833.

[10]

Xiong J. B., Liu J. Z., Liu Q., Jiao Q. C. Chem. J. Chinese Universities, 2010, 31(8): 1560.

[11]

Bogra P., Singh J., Singh H. Process Biochemistry, 2009, 44: 776.

[12]

Hirose J., Ohsaki T., Nishimoto N., Matuoka S., Hiromoto T., Yoshida T., Minoura T., Iwamoto H., Fukasawa K. M. Biol. Pharm. Bull., 2006, 29: 2378.

[13]

Fukasawa K., Kanai M., Fujii S., Harada M. J. Biol. Chem., 1996, 271: 30731.

[14]

Mathew Z., Knox T. M., Miller C. G. Journal of Bacteriology, 2000, 12: 3383.

[15]

White H. C., Wysong D. V., Method of Making Serine, US 2783274, 1957

[16]

Zheng R. C., Zheng Y. G., Shen Y. C. Biotechnol. Lett., 2007, 29: 1087.

[17]

Nandi D., Tahiliani P., Kumar A., Chandu D. J. Biosci., 2006, 31: 137.

[18]

Bhosale M., Pande S., Kumar A., Kairamkonda S., Nandi D. Biochemical and Biophysical Research Communications, 2010, 395: 76.

[19]

Miller C. G., Schwartz G. Bacteriol., 1978, 135: 603.

[20]

Carpenter F. H., Vahl J. M. J. Biol. Chem., 1973, 248: 294.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/