Renal fibrosis is a prevalent pathological alteration that occurs throughout the progression of primary and secondary renal disorders towards end-stage renal disease. As a complex and irreversible pathophysiological phenomenon, it includes a sequence of intricate regulatory processes at the molecular and cellular levels. Exosomes are a distinct category of extracellular vesicles that play a crucial role in facilitating intercellular communication. Multiple pathways are regulated by exosomes produced by various cell types, including tubular epithelial cells and mesenchymal stem cells, in the context of renal fibrosis. Furthermore, research has shown that exosomes present in bodily fluids, including urine and blood, may be indicators of renal fibrosis. However, the regulatory mechanism of exosomes in renal fibrosis has not been fully elucidated. This article reviewed and analysed the various mechanisms by which exosomes regulate renal fibrosis, which may provide new ideas for further study of the pathophysiological process of renal fibrosis and targeted treatment of renal fibrosis with exosomes.
Uncovering mechanisms of endogenous regeneration and repair through resident stem cell activation will allow us to develop specific therapies for injuries and diseases by targeting resident stem cell lineages. Sox9+ stem cells have been reported to play an essential role in acute kidney injury (AKI). However, a complete view of the Sox9+ lineage was not well investigated to accurately elucidate the functional end state and the choice of cell fate during tissue repair after AKI. To identify the mechanisms of fate determination of Sox9+ stem cells, we set up an AKI model with prostaglandin E2 (PGE2) treatment in a Sox9 lineage tracing mouse model. Single-cell RNA sequencing (scRNA-seq) was performed to analyse the transcriptomic profile of the Sox9+ lineage. Our results revealed that PGE2 could activate renal Sox9+ cells and promote the differentiation of Sox9+ cells into renal proximal tubular epithelial cells and inhibit the development of fibrosis. Furthermore, single-cell transcriptome analysis demonstrated that PGE2 could regulate the restoration of lipid metabolism homeostasis in proximal tubular epithelial cells by participating in communication with different cell types. Our results highlight the prospects for the activation of endogenous renal Sox9+ stem cells with PGE2 for the regenerative therapy of AKI.
Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is emerging as a promisingcancer treatment, with notable safety and source diversity benefits over CAR-Tcells. This study focused on optimizing CAR constructs for NK cells to maximize theirtherapeutic potential. We designed seven CD19 CAR constructs and expressed themin NK cells using a retroviral system, assessing their tumour-killing efficacy and persistence.Results showed all constructs enhanced tumour-killing and prolonged survivalin tumour-bearing mice. In particular, CAR1 (CD8 TMD-CD3ζ SD)-NK cells showedsuperior efficacy in treating tumour-bearing animals and exhibited enhanced persistencewhen combined with OX40 co-stimulatory domain. Of note, CAR1-NK cellswere most effective at lower effector-to-target ratios, while CAR4 (CD8 TMD-OX40CD- FcϵRIγ SD) compromised NK cell expansion ability. Superior survival rates werenoted in mice treated with CAR1-, CAR2 (CD8 TMD- FcϵRIγ SD)-, CAR3 (CD8 TMDOX40CD- CD3ζ SD)- and CAR4-NK cells over those treated with CAR5 (CD28TMD- FcϵRIγ SD)-, CAR6 (CD8 TMD-4-1BB CD-CD3ζ 1-ITAM SD)- and CAR7 (CD8TMD-OX40 CD-CD3ζ 1-ITAM SD)-NK cells, with CAR5-NK cells showing the weakestanti-tumour activity. Increased expression of exhaustion markers, especially inCAR7-NK cells, suggests that combining CAR-NK cells with immune checkpointinhibitors might improve anti-tumour outcomes. These findings provide crucialinsights for developing CAR-NK cell products for clinical applications.
Interleukin-18 (IL-18) is a vital pro-inflammatory cytokine crucial for immune regulation. Despite its significance, bibliometric analysis in this field is lacking. This study aims to quantitatively and qualitatively assess IL-18 research to construct its intellectual base and predict future hotspots. We conducted a thorough search on the Web of Science Core Collection for relevant publications between 1 January 2012 and 31 December 2022. English-language articles and reviews were included. Visual analysis was performed using various tools including VOSviewer, Citespace, and Microsoft Excel. Our analysis covers interleukin-18 (IL-18) literature from 2012 to 2022, exploring research trends comprehensively. Key institutions like Yale University and Shanghai Jiao Tong University emerged as significant contributors. Prolific authors such as Kanneganti and Dinarello made notable contributions. Main focus areas included biology, medicine, and immunology. Co-citation analysis highlighted influential works like Jianjin Shi. Hotspot keyword frequency cluster analysis revealed emerging themes like pyroptosis and psoriasis. Gene co-occurrence clustering identified genes associated with immune regulation and inflammation. GO and KEGG pathway enrichment analysis provided insights into IL-18-related biological processes and pathways. Protein–protein interaction networks identified core proteins such as IL10 and TNF. Association disease analysis linked IL-18 to various inflammatory, autoimmune, and metabolic disorders. This bibliometric review offers insights into IL-18 research trends over the past decade, guiding future investigations and serving as a reference for researchers in this field.
The in-depth mechanisms of microRNA regulation of premature ovarian failure (POF) remain unclear. Crispr-cas9 technology was used to construct transgenic mice. The qPCR and Western blot was used to detect the expression level of genes. H&E staining were used to detect ovarian pathological phenotypes. We found that the expression levels of microRNA-3061 were significantly higher in ovarian granulosa cells (OGCs) of POF mouse models than in controls. The miR-3061+/-/AMH-Cre+/- transgenic mice manifested symptoms of POF. RNA-Seq and luciferase reporter assay confirmed that the PAX7 was one of the target genes negatively regulated by microRNA-3061 (miR-3061-5p). Moreover, PAX7 mediated the expression of noncanonical Wnt/Ca2+ signalling pathway by binding to the motifs of promoters to stimulate the transcriptional activation of Wnt5a and CamK2a. In contrast, specific knock-in of microRNA-3061 in OGCs significantly downregulated the expression levels of PAX7 and inhibited the expression of downstream Wnt/Ca2+ signalling pathway. We also discerned a correlation between the expression levels of mRNAs of the Wnt/Ca2+ signalling pathway and the levels of E2 and FSH in POF patients by examining gene expression in the follicular fluid-derived exosomes of women. We confirmed that overexpression of microRNA-3061 induced proliferative inhibition of OGCs and ultimately induced POF in mice by suppressing the transcription factor PAX7 and downregulating expression levels of its downstream Wnt/Ca2+ signalling pathway genes.
Metabolic balance is essential for oocyte maturation and acquisition of developmental capacity. Suboptimal conditions of in vitro cultures would lead to lipid accumulation and finally result in disrupted oocyte metabolism. However, the effect and mechanism underlying lipid catabolism in oocyte development remain elusive currently. In the present study, we observed enhanced developmental capacity in Procyanidin B2 (PCB2) treated oocytes during in vitro maturation. Meanwhile, reduced oxidative stress and declined apoptosis were found in oocytes after PCB2 treatment. Further studies confirmed that oocytes treated with PCB2 preferred to lipids catabolism, leading to a notable decrease in lipid accumulation. Subsequent analyses revealed that mitochondrial uncoupling was involved in lipid catabolism, and suppression of uncoupling protein 1 (UCP1) would abrogate the elevated lipid consumption mediated by PCB2. Notably, we identified peroxisome proliferator-activated receptor gamma (PPARγ) as a potential target of PCB2 by docking analysis. Subsequent mechanistic studies revealed that PCB2 improved oocyte development capacity and attenuated oxidative stress by activating PPARγ mediated mitochondrial uncoupling. Our findings identify that PCB2 intricately improves oocyte development capacity through targeted activation of the PPARγ/UCP1 pathway, fostering uncoupling lipid catabolism while concurrently mitigating oxidative stress.
Regulated cell death (RCD) is a complex process that involves several cell types and plays a crucial role in vascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant elements of the medial layer of blood vessels, and their regulated death contributes to the pathogenesis of vascular diseases. The types of regulated VSMC death include apoptosis, necroptosis, pyroptosis, ferroptosis, parthanatos, and autophagy-dependent cell death (ADCD). In this review, we summarize the current evidence of regulated VSMC death pathways in major vascular diseases, such as atherosclerosis, vascular calcification, aortic aneurysm and dissection, hypertension, pulmonary arterial hypertension, neointimal hyperplasia, and inherited vascular diseases. All forms of RCD constitute a single, coordinated cell death system in which one pathway can compensate for another during disease progression. Pharmacologically targeting RCD pathways has potential for slowing and reversing disease progression, but challenges remain. A better understanding of the role of regulated VSMC death in vascular diseases and the underlying mechanisms may lead to novel pharmacological developments and help clinicians address the residual cardiovascular risk in patients with cardiovascular diseases.
Intervertebral disc degeneration (IDD) is one of the most common causes of chronic low back pain, which does great harm to patients' life quality. At present, the existing treatment options are mostly aimed at relieving symptoms, but the long-term efficacy is not ideal. Tetrahedral framework nucleic acids (tFNAs) are regarded as a type of nanomaterial with excellent biosafety and prominent performance in anti-apoptosis and anti-inflammation. MicroRNA155 is a non-coding RNA involved in various biological processes such as cell proliferation and apoptosis. In this study, a complex named TR155 was designed and synthesised with microRNA155 attached to the vertex of tFNAs, and its effects on the nucleus pulposus cells of intervertebral discs were evaluated both in vitro and in vivo. The experimental results showed that TR155 was able to alleviate the degeneration of intervertebral disc tissue and inhibit nucleus pulposus cell apoptosis via Bcl-2/Bax pathway, indicating its potential to be a promising option for the treatment of IDD.
Pancreatic cancer cells have a much higher metabolic demand than that of normal cells. However, the abundant interstitium and lack of blood supply determine the lack of nutrients in the tumour microenvironment. Although pancreatic cancer has been reported to supply extra metabolic demand for proliferation through autophagy and other means, the specific regulatory mechanisms have not yet been elucidated. In this study, we focused on transcription factor EB (TFEB), a key factor in the regulation of autophagy, to explore its effect on the phenotype and role in the unique amino acid utilisation pattern of pancreatic cancer cells (PCCs). The results showed that TFEB, which is generally highly expressed in pancreatic cancer, promoted the proliferation and metastasis of PCCs. TFEB knockdown inhibited the proliferation and metastasis of PCCs by blocking the catabolism of branched-chain amino acids (BCAAs). Concerning the mechanism, we found that TFEB regulates the catabolism of BCAAs by regulating BCAT1, a key enzyme in BCAA metabolism. BCAA deprivation alone did not effectively inhibit PCC proliferation. However, BCAA deprivation combined with eltrombopag, a drug targeting TFEB, can play a two-pronged role in exogenous supply deprivation and endogenous utilisation blockade to inhibit the proliferation of pancreatic cancer to the greatest extent, providing a new therapeutic direction, such as targeted metabolic reprogramming of pancreatic cancer.
Retinal ischemia/reperfusion injury (RI/R) is a common pathological process in ophthalmic diseases, which can cause severe visual impairment. The mechanisms underlying RI/R damage and repair are still unclear. Scholars are actively exploring effective intervention strategies to restore impaired visual function. With the development of nucleic acid nanomaterials, tetrahedral framework nucleic acids (tFNAs) have shown promising therapeutic potential in various fields such as stem cells, biosensors, and tumour treatment due to their excellent biological properties. Besides, miRNA-22-3p (miR-22), as an important regulatory factor in neural tissue, has been proven to have positive effects in various neurodegenerative diseases. By stably constructing a complex of tetrahedral framework nucleic acids miR22 (tFNAs-miR22), we observed that tFNAs-miR22 had a positive effect on the repair of RI/R injury in retinal neural tissue. Previous studies have shown that tFNAs can effectively deliver miR-22 into damaged retinal neurons, subsequently exerting neuroprotective effects. Interestingly, we found that there was a certain synergistic effect between tFNAs and miR-22. tFNAs-miR22 can selectively activated the ERK1/2 signalling pathway to reduce neuronal apoptosis, accelerate cell proliferation, and restore synaptic functional activity. In this study, we established a simple yet effective small molecule drug for RI/R treatment which may become a promising neuroprotectant for treating this type of vision impairment disease in the future.
Distant metastasis remains the primary cause of morbidity in patients with breast cancer. Hence, the development of more efficacious strategies and the exploration of potential targets for patients with metastatic breast cancer are urgently needed. The data of six patients with breast cancer brain metastases (BCBrM) from two centres were collected, and a comprehensive landscape of the entire tumour ecosystem was generated through the utilisation of single-cell RNA sequencing. We utilised the Monocle2 and CellChat algorithms to investigate the interrelationships among each subcluster. In addition, multiple signatures were collected to evaluate key components of the subclusters through multi-omics methodologies. Finally, we elucidated common expression programs of malignant cells, and experiments were conducted in vitro and in vivo to determine the functions of interleukin enhancer-binding factor 2 (ILF2), which is a key gene in the metastasis module, in BCBrM progression. We found that subclusters in each major cell type exhibited diverse characteristics. Besides, our study indicated that ILF2 was specifically associated with BCBrM, and experimental validations further demonstrated that ILF2 deficiency hindered BCBrM progression. Our study offers novel perspectives on the heterogeneity of BCBrM and suggests that ILF2 could serve as a promising biomarker or therapeutic target for BCBrM.
Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M.tb) and responsible for millions of deaths worldwide each year. It has a complex pathogenesis that primarily affects the lungs but can also impact systemic organs. In recent years, single-cell sequencing technology has been utilized to characterize the composition and proportion of immune cell subpopulations associated with the pathogenesis of TB disease since it has a high resolution that surpasses conventional techniques. This paper reviews the current use of single-cell sequencing technologies in TB research and their application in analysing specimens from various sources of TB, primarily peripheral blood and lung specimens. The focus is on how these technologies can reveal dynamic changes in immune cell subpopulations, genes and proteins during disease progression after M.tb infection. Based on the current findings, single-cell sequencing has significant potential clinical value in the field of TB research. Next, we will focus on the real-world applications of the potential targets identified through single-cell sequencing for diagnostics, therapeutics and the development of effective vaccines.
Chronic allograft dysfunction (CAD) poses a significant challenge in kidney transplantation, with renal vascular endothelial-to-mesenchymal transition (EndMT) playing a vital role. While renal vascular EndMT has been verified as an important contributing factor to renal allograft interstitial fibrosis/tubular atrophy in CAD patients, its underlying mechanisms remain obscure. Currently, Src activation is closely linked to organ fibrosis development. Single-cell transcriptomic analysis in clinical patients revealed that Src is a potential pivotal mediator in CAD progression. Our findings revealed a significant upregulation of Src which closely associated with EndMT in CAD patients, allogeneic kidney transplanted rats and endothelial cells lines. In vivo, Src inhibition remarkably alleviate EndMT and renal allograft interstitial fibrosis in allogeneic kidney transplanted rats. It also had a similar antifibrotic effect in two endothelial cell lines. Mechanistically, the knockout of Src resulted in an augmented AMBRA1-mediated mitophagy in endothelial cells. We demonstrate that Src knockdown upregulates AMBRA1 level and activates mitophagy by stabilizing Parkin’s ubiquitination levels and mitochondrial translocation. Subsequent experiments demonstrated that the knockdown of the Parkin gene inhibited mitophagy in endothelial cells, leading to increased production of Interleukin-6, thereby inducing EndMT. Consequently, our study underscores Src as a critical mediator of renal vascular EndMT and allograft interstitial fibrosis, exerting its impact through the regulation of AMBRA1/Parkin-mediated mitophagy.
Tamoxifen resistance is a common and difficult problem in the clinical treatment of breast cancer (BC). As a novel antitumor agent, Micheliolide (MCL) has shown a better therapeutic effect on tumours; however, little is known about MCL and its role in BC therapy. With tamoxifen stimulation, drug-resistant BC cells MCF7TAMR and T47DTAMR obtained a high oxidative status and Amidohydrolase 1 (ASAH1) was abnormally activated. The inhibition of ASAH1 rescued the sensitivity of resistant cells to tamoxifen. We found that MCL inhibited the expression of ASAH1 and cell proliferation, especially in MCF7TAMR and T47DTAMR cells. The high oxidative stress status of resistant cells stimulated the expression of ASAH1 by positively regulating AKT, which was restrained by MCL. MCL activated NRF2 by directly binding to KEAP1 and promoting the antioxidant level of tamoxifen-resistant (TAMR) cells. In addition, ACT001, the prodrug of MCL, significantly inhibited the tumour growth of TAMR cells in preclinical xenograft tumour models. In conclusion, ASAH1 mediates tamoxifen resistance in ER-positive BC cells. MCL could activate the cellular antioxidant system via NRF2/KEAP1 and inhibit ASAH1 expression through the ROS/AKT signalling pathway, thus suppressing cell proliferation. MCL could be used as a potential treatment for TAMR-BC.
The presence of extensive infiltrated macrophages with impaired phagocytosis is widely recognised as a significant regulator for the development of endometriosis (EMs). Nevertheless, the metabolic characteristics and the fundamental mechanism of impaired macrophage phagocytosis are yet to be clarified. Here, we observe that there is the decreased expression of haematopoietic cellular kinase (HCK) in macrophage of peritoneal fluid from EMs patients, which might be attributed to high oestrogen and hypoxia condition. Of note, HCK deficiency resulted in impaired macrophage phagocytosis, and increased number and weight of ectopic lesions in vitro and in vivo. Mechanistically, this process was mediated via regulation of glutamine metabolism, and further upregulation of macrophage autophagy in a c-FOS/c- JUN dependent manner. Additionally, macrophages of EMs patients displayed insufficient HCK, excessive autophagy and phagocytosis dysfunction. In therapeutic studies, supplementation with glutamine-pre-treated macrophage or Bafilomycin A1 (an autophagy inhibitor)-pre-treated macrophage leads to the induction of macrophage phagocytosis and suppression of EMs development. This observation reveals that the aberrant HCK-glutamine-autophagy axis results in phagocytosis obstacle of macrophage and further increase the development risk of Ems. Additionally, it offers potential therapeutic approaches to prevent EMs, especially patients with insufficient HCK and macrophage phagocytosis dysfunction.
Immunotherapy has brought significant advancements in the treatment of lung adenocarcinoma (LUAD), but identifying suitable candidates remains challenging. In this study, we investigated tumour cell heterogeneity using extensive single-cell data and explored the impact of different tumour cell cluster abundances on immunotherapy in the POPLAR and OAK immunotherapy cohorts. Notably, we found a significant correlation between CKS1B+ tumour cell abundance and treatment response, as well as stemness potential. Leveraging marker genes from the CKS1B+ tumour cell cluster, we employed machine learning algorithms to establish a prognostic and immunotherapeutic signature (PIS) for LUAD. In multiple cohorts, PIS outperformed 144 previously published signatures in predicting LUAD prognosis. Importantly, PIS reliably predicted genomic alterations, chemotherapy sensitivity and immunotherapy responses. Immunohistochemistry validated lower expression of immune markers in the low-PIS group, while in vitro experiments underscored the role of the key gene PSMB7 in LUAD progression. In conclusion, PIS represents a novel biomarker facilitating the selection of suitable LUAD patients for immunotherapy, ultimately improving prognosis and guiding clinical decisions.
Dry eye disease (DED) is a growing public health concern affecting millions of people worldwide and causing ocular discomfort and visual disturbance. Developing its therapeutic drugs based on animal models suffer from interspecies differences and poor prediction of human trials. Here, we established long-term 3D human corneal epithelial organoids, which recapitulated the cell lineages and gene expression signature of the human corneal epithelium. Organoids can be regulated to differentiate ex vivo, but the addition of FGF10 inhibits this process. In the hyperosmolar-induced DED organoid model, the release of inflammatory factors increased, resulting in damage to the stemness of stem cells and a decrease in functional mucin 1 protein. Furthermore, we found that the organoids could mimic clinical drug treatment responses, suggesting that corneal epithelial organoids are promising candidates for establishing a drug testing platform ex vivo. In summary, we established a functional, long-term 3D human epithelial organoid that may serve as an ex vivo model for studying the functional regulation and disease modelling.