Therapeutic effects of tetrahedral framework nucleic acids and tFNAs-miR22 on retinal ischemia/reperfusion injury

Xiaoxiao Xu , Yanyan Fu , Delun Luo , Lina Zhang , Xi Huang , Yingying Chen , Chunyan Lei , Jinnan Liu , Shiqi Li , Zhouyuan Yu , Yunfeng Lin , Meixia Zhang

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (11) : e13695

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (11) :e13695 DOI: 10.1111/cpr.13695
ORIGINAL ARTICLE

Therapeutic effects of tetrahedral framework nucleic acids and tFNAs-miR22 on retinal ischemia/reperfusion injury

Author information +
History +
PDF

Abstract

Retinal ischemia/reperfusion injury (RI/R) is a common pathological process in ophthalmic diseases, which can cause severe visual impairment. The mechanisms underlying RI/R damage and repair are still unclear. Scholars are actively exploring effective intervention strategies to restore impaired visual function. With the development of nucleic acid nanomaterials, tetrahedral framework nucleic acids (tFNAs) have shown promising therapeutic potential in various fields such as stem cells, biosensors, and tumour treatment due to their excellent biological properties. Besides, miRNA-22-3p (miR-22), as an important regulatory factor in neural tissue, has been proven to have positive effects in various neurodegenerative diseases. By stably constructing a complex of tetrahedral framework nucleic acids miR22 (tFNAs-miR22), we observed that tFNAs-miR22 had a positive effect on the repair of RI/R injury in retinal neural tissue. Previous studies have shown that tFNAs can effectively deliver miR-22 into damaged retinal neurons, subsequently exerting neuroprotective effects. Interestingly, we found that there was a certain synergistic effect between tFNAs and miR-22. tFNAs-miR22 can selectively activated the ERK1/2 signalling pathway to reduce neuronal apoptosis, accelerate cell proliferation, and restore synaptic functional activity. In this study, we established a simple yet effective small molecule drug for RI/R treatment which may become a promising neuroprotectant for treating this type of vision impairment disease in the future.

Cite this article

Download citation ▾
Xiaoxiao Xu, Yanyan Fu, Delun Luo, Lina Zhang, Xi Huang, Yingying Chen, Chunyan Lei, Jinnan Liu, Shiqi Li, Zhouyuan Yu, Yunfeng Lin, Meixia Zhang. Therapeutic effects of tetrahedral framework nucleic acids and tFNAs-miR22 on retinal ischemia/reperfusion injury. Cell Proliferation, 2024, 57(11): e13695 DOI:10.1111/cpr.13695

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MinhasG, SharmaJ, KhanN. Cellular stress response and immune signaling in retinal ischemia-reperfusion injury. Front Immunol. 2016;7:444.

[2]

ZhengX, WangM, LiuS, et al. A lncRNA-encoded mitochondrial micropeptide exacerbates microglia-mediated neuroinflammation in retinal ischemia/reperfusion injury. Cell Death Dis. 2023;14(2):126.

[3]

SenthilS, DadaT, dasT, et al. Neovascular glaucoma—a review. Indian J Ophthalmol. 2021;69(3):525-534.

[4]

DumitrascuOM, Demaerschalk BM, Valencia SanchezC, et al. Retinal microvascular abnormalities as surrogate markers of cerebrovascular ischemic disease: a meta-analysis. J Stroke Cerebrovasc Dis. 2018;27(7):1960-1968.

[5]

HayrehSS. Central retinal artery occlusion. Indian J Ophthalmol. 2018;66(12):1684-1694.

[6]

Flores-SánchezBC, TathamAJ. Acute angle closure glaucoma. Br J Hosp Med (Lond). 2019;80(12):C174-c179.

[7]

MorrowMJ. Ischemic optic neuropathy. Continuum (Minneap Minn). 2019;25(5):1215-1235.

[8]

CheungN, Mitchell P, WongTY. Diabetic retinopathy. Lancet. 2010;376(9735):124-136.

[9]

GonzalezLM, MoeserAJ, BlikslagerAT. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research. Am J Physiol Gastrointest Liver Physiol. 2015;308(2):G63-G75.

[10]

JuWK, Perkins GA, KimKY, BastolaT, ChoiWY, ChoiSH. Glaucomatous optic neuropathy: mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res. 2023;95:101136.

[11]

MiaoY, ZhaoGL, ChengS, Wang Z, YangXL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res. 2023;93:101169.

[12]

AlmasiehM, WilsonAM, MorquetteB, Cueva Vargas JL, Di PoloA. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31(2):152-181.

[13]

UnterlauftJD, Schawkat M, HänerN, LinckeJ, Zinkernagel MS. Therapy of malignant glaucoma. Fortschr Ophthalmol. 2022;119(11):1155-1159.

[14]

CassonRJ. Medical therapy for glaucoma: a review. Clin Exp Ophthalmol. 2022;50(2):198-212.

[15]

WeinrebRN, AungT, MedeirosFA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901-1911.

[16]

García-CamposJ, Villena A, DíazF, VidalL, MorenoM, de Pérez VargasI. Morphological and functional changes in experimental ocular hypertension and role of neuroprotective drugs. Histol Histopathol. 2007;22(12):1399-1411.

[17]

TrostA, Motloch K, BrucknerD, et al. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension. Exp Eye Res. 2015;136:59-71.

[18]

JiJ, KarnaD, MaoH. DNA origami nano-mechanics. Chem Soc Rev. 2021;50(21):11966-11978.

[19]

LinY, LiQ, WangL, et al. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. Int J Oral Sci. 2022;14(1):51.

[20]

ZhangT, TianT, LinY. Functionalizing framework nucleic-acid-based nanostructures for biomedical application. Adv Mater. 2022;34(46):e2107820.

[21]

ZhangM, QinX, GaoY, et al. Transcutaneous immunotherapy for RNAi: a Cascade-responsive decomposable nanocomplex based on polyphenol-mediated framework nucleic acid in psoriasis. Adv Sci (Weinh). 2023;10(33):e2303706.

[22]

SugiuraR, SatohR, TakasakiT. ERK: a double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer. Cells. 2021;10(10):2509.

[23]

PengZ, Kellenberger S. Hydrogen sulfide upregulates acid-sensing ion channels via the MAPK-Erk1/2 signaling pathway. Function (Oxf). 2021;2(2):zqab007.

[24]

LuTX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202-1207.

[25]

FuY, YeY, JiaX, et al. Transneuronal degeneration in the visual pathway of rats following acute retinal ischemia/reperfusion. Dis Markers. 2021;2021:1-6.

[26]

DouY, CuiW, YangX, Lin Y, MaX, CaiX. Applications of tetrahedral DNA nanostructures in wound repair and tissue regeneration. Burns Trauma. 2022;10:10.

[27]

MaW, ShaoX, ZhaoD, et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater Interfaces. 2018;10(9):7892-7900.

[28]

LinYF. Tetrahedral framework nucleic acids and human health. Sichuan Da Xue Xue Bao Yi Xue Ban. 2021;52(3):345-349.

[29]

WangY, ZhaoL, KanB, ShiH, HanJ. miR-22 exerts anti-alzheimic effects via the regulation of apoptosis of hippocampal neurons. Cell Mol Biol (Noisy-le-grand). 2018;64(15):84-89.

[30]

LiangL, LiJ, LiQ, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew Chem Int ed Engl. 2014;53(30):7745-7750.

[31]

GidlöfO, van der Brug M, ÖhmanJ, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood. 2013;121(19):3908-3917. s3901-3926.

[32]

WanS, AshrafU, YeJ, et al. MicroRNA-22 negatively regulates poly(I:C)-triggered type I interferon and inflammatory cytokine production via targeting mitochondrial antiviral signaling protein (MAVS). Oncotarget. 2016;7(47):76667-76683.

[33]

BaoL, LiX. MicroRNA-32 targeting PTEN enhances M2 macrophage polarization in the glioma microenvironment and further promotes the progression of glioma. Mol Cell Biochem. 2019;460(1–2):67-79.

[34]

RaniP, GeorgeB, SabarishreeV, et al. MicroRNA-22-3p displaces critical host factors from the 5’ UTR and inhibits the translation of coxsackievirus B3 RNA. J Virol. 2024;98(2):e0150423.

[35]

GurhaP. MicroRNAs in cardiovascular disease. Curr Opin Cardiol. 2016;31(3):249-254.

[36]

HuangZP, WangDZ. miR-22 in cardiac remodeling and disease. Trends Cardiovasc Med. 2014;24(7):267-272.

[37]

CoffmanJA. Cell cycle development. Dev Cell. 2004;6(3):321-327.

[38]

XuZ, SongY, WangF. Rational design of genetically encoded reporter genes for optical imaging of apoptosis. Apoptosis. 2020;25(7–8):459-473.

[39]

Behar-CohenFF, Thillaye-Goldenberg B, de BizemontT, SavoldelliM, Chauvaud D, de KozakY. EIU in the rat promotes the potential of syngeneic retinal cells injected into the vitreous cavity to induce PVR. Invest Ophthalmol Vis Sci. 2000;41(12):3915-3924.

[40]

PereiroX, RuzafaN, UrcolaJH, Sharma SC, VecinoE. Differential distribution of RBPMS in pig, rat, and human retina after damage. Int J Mol Sci. 2020;21(23):9330.

[41]

GuoL, XieX, WangJ, et al. Inducible Rbpms-CreER(T2) mouse line for studying gene function in retinal ganglion cell physiology and disease. Cells. 2023;12(15):1951.

[42]

MavlyutovTA, MyrahJJ, ChauhanAK, Liu Y, McDowellCM. Fibronectin extra domain A (FN-EDA) causes glaucomatous trabecular meshwork, retina, and optic nerve damage in mice. Cell Biosci. 2022;12(1):72.

[43]

KuriharaT, OzawaY, NagaiN, et al. Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina. Diabetes. 2008;57(8):2191-2198.

[44]

KiveläT, Tarkkanen A, VirtanenI. Synaptophysin in the human retina and retinoblastoma. An immunohistochemical and Western blotting study. Invest Ophthalmol Vis Sci. 1989;30(2):212-219.

[45]

D’CruzTS, Weibley BN, KimballSR, BarberAJ. Post-translational processing of synaptophysin in the rat retina is disrupted by diabetes. PLoS One. 2012;7(9):e44711.

[46]

XuY, JiangW, ZhongL, et al. Circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p/Wnt/β-catenin pathway and oxidative stress. J Cell Mol Med. 2022;26(6):1766-1775.

[47]

LiuZ, MengY, MiaoY, et al. Propofol ameliorates renal ischemia/reperfusion injury by enhancing macrophage M2 polarization through PPARγ/STAT3 signaling. Aging (Albany NY). 2021;13(11):15511-15522.

[48]

FriedmanJR, Richbart SD, MerrittJC, et al. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther. 2019;194:222-254.

[49]

ParsonsSM. Transport mechanisms in acetylcholine and monoamine storage. FASEB J. 2000;14(15):2423-2434.

[50]

LiuG, LiQ, YuY, WangG. Role of ERK1/2 signaling pathway in mitigation of myocardial ischemia-reperfusion injury by diazoxide postconditioning in rats. Chinese J Anesthesiol. 2014;34:1485-1488.

[51]

LiW, HeQZ, WuCQ, et al. PFOS disturbs BDNF-ERK-CREB Signalling in association with increased MicroRNA-22 in SH-SY5Y cells. Biomed Res Int. 2015;2015:302653.

[52]

GaumerS, Guénal I, BrunS, ThéodoreL, Mignotte B. Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ. 2000;7(9):804-814.

[53]

HoetelmansR, van Slooten HJ, KeijzerR, ErkelandS, van de Velde CJ, DierendonckJH. Bcl-2 and Bax proteins are present in interphase nuclei of mammalian cells. Cell Death Differ. 2000;7(4):384-392.

[54]

ZhangY, YangX, GeX, ZhangF. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 2019;109:726-733.

[55]

ShenJ, YangX, XieB, et al. MicroRNAs regulate ocular neovascularization. Mol Ther. 2008;16(7):1208-1216.

[56]

PanellaR, PetriA, DesaiBN, et al. MicroRNA-22 is a key regulator of lipid and metabolic homeostasis. Int J Mol Sci. 2023;24(16):12870.

[57]

DongS, SunY. MicroRNA-22 may promote apoptosis and inhibit the proliferation of hypertrophic scar fibroblasts by regulating the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase/p21 pathway. Exp Ther Med. 2017;14(4):3841-3845.

[58]

KuseN, KamioK, AzumaA, et al. Exosome-derived microRNA-22 ameliorates pulmonary fibrosis by regulating fibroblast-to-myofibroblast differentiation in vitro and in vivo. J Nippon Med Sch. 2020;87(3):118-128.

[59]

HuY, Setayesh T, VaziriF, et al. miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism. Mol Ther. 2023;31(6):1829-1845.

[60]

JovicicA, Zaldivar Jolissaint JF, MoserR, Silva Santos MdeF, Luthi-Carter R. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One. 2013;8(1):e54222.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/