Single-cell sequencing: Current applications in various tuberculosis specimen types

Yuqin Zeng , Quan Ma , Jinyun Chen , Xingxing Kong , Zhanpeng Chen , Huazhen Liu , Lanlan Liu , Yan Qian , Xiaomin Wang , Shuihua Lu

Cell Proliferation ›› 2024, Vol. 57 ›› Issue (11) : e13698

PDF
Cell Proliferation ›› 2024, Vol. 57 ›› Issue (11) : e13698 DOI: 10.1111/cpr.13698
REVIEW

Single-cell sequencing: Current applications in various tuberculosis specimen types

Author information +
History +
PDF

Abstract

Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M.tb) and responsible for millions of deaths worldwide each year. It has a complex pathogenesis that primarily affects the lungs but can also impact systemic organs. In recent years, single-cell sequencing technology has been utilized to characterize the composition and proportion of immune cell subpopulations associated with the pathogenesis of TB disease since it has a high resolution that surpasses conventional techniques. This paper reviews the current use of single-cell sequencing technologies in TB research and their application in analysing specimens from various sources of TB, primarily peripheral blood and lung specimens. The focus is on how these technologies can reveal dynamic changes in immune cell subpopulations, genes and proteins during disease progression after M.tb infection. Based on the current findings, single-cell sequencing has significant potential clinical value in the field of TB research. Next, we will focus on the real-world applications of the potential targets identified through single-cell sequencing for diagnostics, therapeutics and the development of effective vaccines.

Cite this article

Download citation ▾
Yuqin Zeng, Quan Ma, Jinyun Chen, Xingxing Kong, Zhanpeng Chen, Huazhen Liu, Lanlan Liu, Yan Qian, Xiaomin Wang, Shuihua Lu. Single-cell sequencing: Current applications in various tuberculosis specimen types. Cell Proliferation, 2024, 57(11): e13698 DOI:10.1111/cpr.13698

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AcharyaB, Acharya A, GautamS, et al. Advances in diagnosis of tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep. 2020;47(5):4065-4075.

[2]

Global Tuberculosis Report 2023 [Licence: CC BY-NC-SA 3.0 IGO]. World Health Organization; 2023.

[3]

BagcchiS. WHO’s global tuberculosis report 2022. Lancet Microbe. 2023;4(1):e20.

[4]

HoneyborneI, LipmanM, ZumlaA, McHugh TD. The changing treatment landscape for MDR/XDR-TB—can current clinical trials revolutionise and inform a brave new world? Int J Infect Dis. 2019;80:S23-S28.

[5]

BloomBR. A half-century of research on tuberculosis: successes and challenges. J Exp Med. 2023;220(9):e20230859.

[6]

RyuYJ. Diagnosis of pulmonary tuberculosis: recent advances and diagnostic algorithms. Tuberc Respir Dis (Seoul). 2015;78(2):64-71.

[7]

NessTE, DiNardo A, FarhatMR. High throughput sequencing for clinical tuberculosis: an overview. Pathogens. 2022;11(11):1343.

[8]

BrettK, DulongC, SevernM. CADTH rapid response reports. Drug-Resistant Tuberculosis: A Review of the Guidelines. Canadian Agency for Drugs and Technologies in Health Copyright ® 2020 Canadian Agency for Drugs and Technologies in Health; 2020.

[9]

GuptaA, Anupurba S. Detection of drug resistance in Mycobacterium tuberculosis: methods, principles and applications. Indian J Tuberc. 2015;62(1):13-22.

[10]

NiemannS, SupplyP. Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med. 2014;4(12):a021188.

[11]

SanzE, YangL, SuT, MorrisDR, McKnightGS, Amieux PS. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci U S A. 2009;106(33):13939-13944.

[12]

TangX, HuangY, LeiJ, LuoH, ZhuX. The single-cell sequencing: new developments and medical applications. Cell Biosci. 2019;9:53.

[13]

McCaffreyEF, DonatoM, KerenL, et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol. 2022;23(2):318-329.

[14]

de MartinoM, LodiL, GalliL, Chiappini E. Immune response to Mycobacterium tuberculosis: a narrative review. Front Pediatr. 2019;7:350.

[15]

TangF, Barbacioru C, WangY, et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377-382.

[16]

MelnekoffDT, Laganà A. Single-cell sequencing technologies in precision oncology. Adv Exp Med Biol. 2022;1361:269-282.

[17]

YeB, GaoQ, ZengZ, et al. Single-cell sequencing technology in oncology: applications for clinical therapies and research. Anal Cell Pathol (Amst). 2016;2016:9369240.

[18]

LeiY, TangR, XuJ, et al. Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol. 2021;14(1):91.

[19]

ChenH, YeF, GuoG. Revolutionizing immunology with single-cell RNA sequencing. Cell Mol Immunol. 2019;16(3):242-249.

[20]

CaoY, QiuY, TuG, YangC. Single-cell RNA sequencing in immunology. Curr Genomics. 2020;21(8):564-575.

[21]

PapalexiE, SatijaR. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018;18(1):35-45.

[22]

StowerH. Single-cell insights into neurology. Nat Med. 2019;25(12):1799.

[23]

MathysH, Davila-Velderrain J, PengZ, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 2019;570(7761):332-337.

[24]

Single-cell microbiology. Nat Biotechnol. 2016;34(11):1077.

[25]

ImdahlF, SalibaAE. Advances and challenges in single-cell RNA-seq of microbial communities. Curr Opin Microbiol. 2020;57:102-110.

[26]

YuanP, YanL-Y, QiaoJ, Sun M. Application of single-cell sequencing technologies in reproductive medicine. Reprod Dev Med. 2017;01(01):30-35.

[27]

ShangguanY, LiC, LinH, et al. Application of single-cell RNA sequencing in embryonic development. Genomics. 2020;112(6):4547-4551.

[28]

HaberAL, BitonM, RogelN, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551(7680):333-339.

[29]

GaoS, YanL, WangR, et al. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat Cell Biol. 2018;20(6):721-734.

[30]

WangP, ChenY, YongJ, et al. Dissecting the global dynamic molecular profiles of human fetal kidney development by single-cell RNA sequencing. Cell Rep. 2018;24(13):3554-3567.e3553.

[31]

PensoldD, Zimmer-Bensch G. Methods for single-cell isolation and preparation. Adv Exp Med Biol. 2020;1255:7-27.

[32]

Macosko EvanZ, BasuA, SatijaR, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202-1214.

[33]

FanHC, FuGK, FodorSP. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science. 2015;347(6222):1258367.

[34]

SteinCM, Weiskirchen R, DammF, StrzeleckaPM. Single-cell omics: overview, analysis, and application in biomedical science. J Cell Biochem. 2021;122(11):1571-1578.

[35]

HuY, AnQ, SheuK, Trejo B, FanS, GuoY. Single cell multi-omics technology: methodology and application. Front Cell Dev Biol. 2018;6:28.

[36]

KolodziejczykAA, KimJK, SvenssonV, Marioni JC, TeichmannSA. The technology and biology of single-cell RNA sequencing. Mol Cell. 2015;58(4):610-620.

[37]

PanJ, ChangZ, ZhangX, et al. Research progress of single-cell sequencing in tuberculosis. Front Immunol. 2023;14:1276194.

[38]

DeanFB, HosonoS, FangL, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A. 2002;99(8):5261-5266.

[39]

WuH, ZhangJ, JianF, et al. Simultaneous single-cell three-dimensional genome and gene expression profiling uncovers dynamic enhancer connectivity underlying olfactory receptor choice. Nat Methods. 2024;21:974-982.

[40]

SlovinS, Carissimo A, PanarielloF, et al. Single-cell RNA sequencing analysis: a step-by-step overview. Methods Mol Biol. 2021;2284:343-365.

[41]

OlsenTK, Baryawno N. Introduction to single-cell RNA sequencing. Curr Protoc Mol Biol. 2018;122(1):e57.

[42]

RenX, WenW, FanX, et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell. 2021;184(7):1895-1913.e1819.

[43]

Van de SandeB, LeeJS, Mutasa-GottgensE, et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov. 2023;22(6):496-520.

[44]

GeraldesI, Fernandes M, FragaAG, OsórioNS. The impact of single-cell genomics on the field of mycobacterial infection. Front Microbiol. 2022;13:989464.

[45]

CusanovichDA, HillAJ, AghamirzaieD, et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell. 2018;174(5):1309-1324.e1318.

[46]

CusanovichDA, Reddington JP, GarfieldDA, et al. The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature. 2018;555(7697):538-542.

[47]

FincherCT, Wurtzel O, de HoogT, KravarikKM, Reddien PW. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science. 2018;360(6391):eaaq1736.

[48]

HanX, ZhouZ, FeiL, et al. Construction of a human cell landscape at single-cell level. Nature. 2020;581(7808):303-309.

[49]

LauX, Munusamy P, NgMJ, SangrithiM. Single-cell RNA sequencing of the cynomolgus macaque testis reveals conserved transcriptional profiles during mammalian spermatogenesis. Dev Cell. 2020;54(4):548-566.e547.

[50]

WagnerDE, Weinreb C, CollinsZM, BriggsJA, Megason SG, KleinAM. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 2018;360(6392):981-987.

[51]

ChenSY, YueT, LeiQ, GuoAY. TCRdb: a comprehensive database for T-cell receptor sequences with powerful search function. Nucleic Acids Res. 2021;49(D1):D468-D474.

[52]

De SimoneM, Rossetti G, PaganiM. Single cell T cell receptor sequencing: techniques and future challenges. Front Immunol. 2018;9:1638.

[53]

PaiJA, Satpathy AT. High-throughput and single-cell T cell receptor sequencing technologies. Nat Methods. 2021;18(8):881-892.

[54]

StoeckiusM, Hafemeister C, StephensonW, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14(9):865-868.

[55]

Pombo AntunesAR, Scheyltjens I, LodiF, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci. 2021;24(4):595-610.

[56]

HaoY, HaoS, Andersen-NissenE, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587.e3529.

[57]

WuSZ, Al-Eryani G, RodenDL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet. 2021;53(9):1334-1347.

[58]

BaekS, LeeI. Single-cell ATAC sequencing analysis: from data preprocessing to hypothesis generation. Comput Struct Biotechnol J. 2020;18:1429-1439.

[59]

BajicM, MaherKA, DealRB. Identification of open chromatin regions in plant genomes using ATAC-seq. Methods Mol Biol. 2018;1675:183-201.

[60]

GrandiFC, ModiH, KampmanL, Corces MR. Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 2022;17(6):1518-1552.

[61]

BuenrostroJD, WuB, LitzenburgerUM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486-490.

[62]

SatpathyAT, GranjaJM, YostKE, et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat Biotechnol. 2019;37(8):925-936.

[63]

MiaoZ, BalzerMS, MaZ, et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat Commun. 2021;12(1):2277.

[64]

RanzoniAM, Tangherloni A, BerestI, et al. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis. Cell Stem Cell. 2021;28(3):472-487.e477.

[65]

KaufmannSH, Schaible UE. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol. 2005;13(10):469-475.

[66]

AgyemanAA, Ofori-Asenso R. Tuberculosis—an overview. J Public Health Emerg. 2017;1(1):7.

[67]

LyonSM, Rossman MD. Pulmonary tuberculosis. Microbiol Spectr. 2017;5:1.

[68]

XuF, WangQ, ZhangN, et al. Simultaneous diagnosis of tuberculous pleurisy and malignant pleural effusion using metagenomic next-generation sequencing (mNGS). J Transl Med. 2023;21(1):680.

[69]

SmithI. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16(3):463-496.

[70]

BrehmTT, Terhalle E. Extrapulmonary tuberculosis. Dtsch Med Wochenschr. 2023;148(19):1242-1249.

[71]

SchlugerNW. The pathogenesis of tuberculosis. Am J Respir Cell Mol Biol. 2005;32(4):251-256.

[72]

AlsayedSSR, Gunosewoyo H. Tuberculosis: pathogenesis, current treatment regimens and new drug targets. Int J Mol Sci. 2023;24(6):5202.

[73]

LeungAN. Pulmonary tuberculosis: the essentials. Radiology. 1999;210(2):307-322.

[74]

LuiesL, du Preez I. The Echo of pulmonary tuberculosis: mechanisms of clinical symptoms and other disease-induced systemic complications. Clin Microbiol Rev. 2020;33(4):e00036-20.

[75]

AnHJ, ChonHJ, KimC. Peripheral blood-based biomarkers for immune checkpoint inhibitors. Int J Mol Sci. 2021;22(17):9414.

[76]

HwangM, Canzoniero JV, RosnerS, et al. Peripheral blood immune cell dynamics reflect antitumor immune responses and predict clinical response to immunotherapy. J Immunother Cancer. 2022;10(6):e004688.

[77]

KahaseD, Solomon A, AlemayehuM. Evaluation of peripheral blood parameters of pulmonary tuberculosis patients at st. Paul’s hospital millennium medical college, Addis Ababa, Ethiopia: comparative study. J Blood Med. 2020;11:115-121.

[78]

NayakSS, ShettyMV, PaiCG, Guruprasad KP, SatyamoorthyK. Apoptosis in peripheral blood lymphocytes in intestinal tuberculosis and Crohn’s disease: implications to diagnostic differentiation. Indian J Gastroenterol. 2020;39(4):338-345.

[79]

KleivelandCR. Peripheral blood mononuclear cells. In: Verhoeckx K, Cotter P, López-Expósito I, et al., eds. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Springer International Publishing; 2015:161-167.

[80]

DerboisC, Palomares M-A, DeleuzeJ-F, CabannesE, BonnetE. Single cell transcriptome sequencing of stimulated and frozen human peripheral blood mononuclear cells. Sci Data. 2023;10(1):433.

[81]

GierahnTM, Wadsworth MH 2nd, HughesTK, et al. Seq-well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14(4):395-398.

[82]

HuangH, SikoraMJ, IslamS, et al. Select sequencing of clonally expanded CD8(+) T cells reveals limits to clonal expansion. Proc Natl Acad Sci U S A. 2019;116(18):8995-9001.

[83]

JovicD, LiangX, ZengH, Lin L, XuF, LuoY. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12(3):e694.

[84]

CaiY, DaiY, WangY, et al. Single-cell transcriptomics of blood reveals a natural killer cell subset depletion in tuberculosis. EBioMedicine. 2020;53:102686.

[85]

PanJ, ZhangX, XuJ, ChangZ, XinZ, WangG. Landscape of exhausted T cells in tuberculosis revealed by single-cell sequencing. Microbiol Spectr. 2023;11(2):e0283922.

[86]

SampathP, Moideen K, RanganathanUD, BethunaickanR. Monocyte subsets: phenotypes and function in tuberculosis infection. Front Immunol. 2018;9:1726.

[87]

HillmanH, KhanN, SinghaniaA, et al. Single-cell profiling reveals distinct subsets of CD14+ monocytes drive blood immune signatures of active tuberculosis. Front Immunol. 2022;13:1087010.

[88]

MusvosviM, HuangH, WangC, et al. T cell receptor repertoires associated with control and disease progression following Mycobacterium tuberculosis infection. Nat Med. 2023;29(1):258-269.

[89]

JiangJ, CaoZ, XiaoL, et al. Single-cell profiling identifies T cell subsets associated with control of tuberculosis dissemination. Clin Immunol. 2023;248:109266.

[90]

NathanA, BeynorJI, BaglaenkoY, et al. Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nat Immunol. 2021;22(6):781-793.

[91]

WangY, SunQ, ZhangY, et al. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J Infect. 2023;86(5):421-438.

[92]

XuY, TanY, ZhangX, et al. Comprehensive identification of immuno-related transcriptional signature for active pulmonary tuberculosis by integrated analysis of array and single cell RNA-seq. J Infect. 2022;85(5):534-544.

[93]

ZhouP, ShenJ, GeX, et al. Classification and characterisation of extracellular vesicles-related tuberculosis subgroups and immune cell profiles. J Cell Mol Med. 2023;27(17):2482-2494.

[94]

NiewoldP, Dijkstra DJ, CaiY, et al. Identification of circulating monocytes as producers of tuberculosis disease biomarker C1q. Sci Rep. 2023;13(1):11617.

[95]

SheerinD, Abhimanyu , WangX, JohnsonWE, Coussens A. Systematic evaluation of transcriptomic disease risk and diagnostic biomarker overlap between COVID-19 and tuberculosis: a patient-level meta-analysis. medRxiv. 2020;25(6):104464.

[96]

KorniotisS, SaichiM, TrichotC, et al. GM-CSF-activated human dendritic cells promote type 1 T follicular helper cell polarization in a CD40-dependent manner. J Cell Sci. 2022;135(21):jcs260298.

[97]

KulkarniS, Endsley JJ, LaiZ, BradleyT, SharanR. Single-cell transcriptomics of Mtb/HIV Co-infection. Cells. 2023;12(18):2295.

[98]

GuoQ, ZhongY, WangZ, et al. Single-cell transcriptomic landscape identifies the expansion of peripheral blood monocytes as an indicator of HIV-1-TB co-infection. Cell Insight. 2022;1(1):100005.

[99]

OelenR, de Vries DH, BruggeH, et al. Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure. Nat Commun. 2022;13(1):3267.

[100]

DongW, LiW, ZhangS, et al. Exhaustion-like dysfunction of T and NKT cells in an X-linked severe combined immunodeficiency patient with maternal engraftment by single-cell analysis. Int J Mol Med. 2023;51(3):25.

[101]

BobbaS, HowardNC, DasS, et al. Mycobacterium tuberculosis infection drives differential responses in the bone marrow hematopoietic stem and progenitor cells. Infect Immun. 2023;91(10):e0020123.

[102]

PisuD, HuangL, NarangV, et al. Single cell analysis of M. Tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med. 2021;218(9):e20210615.

[103]

PisuD, Russell DG. Protocol for multi-modal single-cell RNA sequencing on M. Tuberculosis-infected mouse lungs. STAR Protoc. 2023;4(1):102102.

[104]

EsaulovaE, DasS, SinghDK, et al. The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host Microbe. 2021;29(2):165-178.e168.

[105]

AkterS, Chauhan KS, DunlapMD, et al. Mycobacterium tuberculosis infection drives a type I IFN signature in lung lymphocytes. Cell Rep. 2022;39(12):110983.

[106]

WangL, MaH, WenZ, et al. Single-cell RNA-sequencing reveals heterogeneity and intercellular crosstalk in human tuberculosis lung. J Infect. 2023;87(5):373-384.

[107]

JaiswalS, Nyquist SK, BoyceS, et al. Identification and characterization of the T cell receptor (TCR) repertoire of the cynomolgus macaque (Macaca fascicularis). BMC Genomics. 2022;23(1):647.

[108]

JongRM, Van Dis E, BerrySB, et al. Mucosal vaccination with cyclic dinucleotide adjuvants induces effective T cell homing and IL-17-dependent protection against Mycobacterium tuberculosis infection. J Immunol. 2022;208(2):407-419.

[109]

Rosas MejiaO, GloagES, LiJ, et al. Mice infected with Mycobacterium tuberculosis are resistant to acute disease caused by secondary infection with SARS-CoV-2. PLoS Pathog. 2022;18(3):e1010093.

[110]

MartinsenEM, LeitenEO, BakkePS, Eagan TM, GrønsethR. Participation in research bronchoscopy: a literature review. Eur Clin Respir J. 2016;3:29511.

[111]

DavidsonKR, HaDM, SchwarzMI, Chan ED. Bronchoalveolar lavage as a diagnostic procedure: a review of known cellular and molecular findings in various lung diseases. J Thorac Dis. 2020;12(9):4991-5019.

[112]

ChenQ, HuC, LuW, et al. Characteristics of alveolar macrophages in bronchioalveolar lavage fluids from active tuberculosis patients identified by single-cell RNA sequencing. J Biomed Res. 2022;36(3):167-180.

[113]

YangQ, QiF, YeT, et al. The interaction of macrophages and CD8 T cells in bronchoalveolar lavage fluid is associated with latent tuberculosis infection. Emerg Microbes Infect. 2023;12(2):2239940.

[114]

PetersJM, IrvineEB, RosenbergJM, et al. Protective intravenous BCG vaccination induces enhanced immune signaling in the airways. bioRxiv. 2023:549208.

[115]

BussiC, HeunisT, PellegrinoE, et al. Lysosomal damage drives mitochondrial proteome remodelling and reprograms macrophage immunometabolism. Nat Commun. 2022;13(1):7338.

[116]

GrantNL, Maiello P, KleinE, et al. T cell transcription factor expression evolves over time in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Rep. 2022;39(7):110826.

[117]

GideonHP, HughesTK, TzouanasCN, et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity. 2022;55(5):827-846.e810.

[118]

CronanMR, HughesEJ, BrewerWJ, et al. A non-canonical type 2 immune response coordinates tuberculous granuloma formation and epithelialization. Cell. 2021;184(7):1757-1774.e1714.

[119]

WinchellCG, Nyquist SK, ChaoMC, et al. CD8+ lymphocytes are critical for early control of tuberculosis in macaques. J Exp Med. 2023;220(12):e20230707.

[120]

ZhaiK, LuY, ShiHZ. Tuberculous pleural effusion. J Thorac Dis. 2016;8(7):E486-E494.

[121]

Lo CascioCM, KaulV, DhooriaS, Agrawal A, ChaddhaU. Diagnosis of tuberculous pleural effusions: a review. Respir Med. 2021;188:106607.

[122]

ShaoMM, YiFS, HuangZY, et al. T cell receptor repertoire analysis reveals signatures of T cell responses to human Mycobacterium tuberculosis. Front Microbiol. 2022;13:829694.

[123]

CaiY, WangY, ShiC, et al. Single-cell immune profiling reveals functional diversity of T cells in tuberculous pleural effusion. J Exp Med. 2022;219(3):e20211777.

[124]

YangX, YanJ, XueY, et al. Single-cell profiling reveals distinct immune response landscapes in tuberculous pleural effusion and non-TPE. Front Immunol. 2023;14:1191357.

[125]

ZhangX, ZhaoZ, WuQ, et al. Single-cell analysis reveals changes in BCG vaccine-injected mice modeling tuberculous meningitis brain infection. Cell Rep. 2023;42(3):112177.

[126]

ZhangX, PanL, ZhangP, et al. Single-cell analysis of the miRNA activities in tuberculous meningitis (TBM) model mice injected with the BCG vaccine. Int Immunopharmacol. 2023;124(Pt A):110871.

[127]

LienardJ, MunkeK, WulffL, et al. Intragranuloma accumulation and inflammatory differentiation of neutrophils underlie mycobacterial ESX-1-dependent immunopathology. MBio. 2023;14(2):e0276422.

RIGHTS & PERMISSIONS

2024 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/