Mar 2015, Volume 16 Issue 3
    

  • Select all
  • Alicia CANTÓN,Leonardo FERNÁNDEZ-JAMBRINA

    In this paper we address the problem of interpolating a spline developable patch bounded by a given spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a second spline curve is to be given. Up to now this interpolation problem could be solved, but without the possibility of choosing both endpoints for the rulings. We circumvent such difficulty by resorting to degree elevation of the developable surface. This is useful for solving not only this problem, but also other problems dealing with triangular developable patches.

  • Rong ZOU,Zhen-ying XU,Jin-yang LI,Fu-qiang ZHOU

    Condition monitoring ensures the safety of freight railroad operations. With the development of machine vision technology, visual inspection has become a principal means of condition monitoring. The brake shoe key (BSK) is an important component in the brake system, and its absence will lead to serious accidents. This paper presents a novel method for automated visual inspection of the BSK condition in freight cars. BSK images are first acquired by hardware devices. The subsequent inspection process is divided into three stages: first, the region-of-interest (ROI) is segmented from the source image by an improved spatial pyramid matching scheme based on multi-scale census transform (MSCT). To localize the BSK in the ROI, census transform (CT) on gradient images is developed in the second stage. Then gradient encoding histogram (GEH) features and linear support vector machines (SVMs) are used to generate a BSK localization classifier. In the last stage, a condition classifier is trained by SVM, but the features are extracted from gray images. Finally, the ROI, BSK localization, and condition classifiers are cascaded to realize a completely automated inspection system. Experimental results show that the system achieves a correct inspection rate of 99.2% and a speed of 5 frames/s, which represents a good real-time performance and high recognition accuracy.

  • Yu-xiang LI,Yin-liang ZHAO,Bin LIU,Shuo JI

    Thread partition plays an important role in speculative multithreading (SpMT) for automatic parallelization of irregular programs. Using unified values of partition parameters to partition different applications leads to the fact that every application cannot own its optimal partition scheme. In this paper, five parameters affecting thread partition are extracted from heuristic rules. They are the dependence threshold (DT), lower limit of thread size (TSL), upper limit of thread size (TSU), lower limit of spawning distance (SDL), and upper limit of spawning distance (SDU). Their ranges are determined in accordance with heuristic rules, and their step-sizes are set empirically. Under the condition of setting speedup as an objective function, all combinations of five threshold values form the solution space, and our aim is to search for the best combination to obtain the best thread granularity, thread dependence, and spawning distance, so that every application has its best partition scheme. The issue can be attributed to a single objective optimization problem. We use the artificial immune algorithm (AIA) to search for the optimal solution. On Prophet, which is a generic SpMT processor to evaluate the performance of multithreaded programs, Olden benchmarks are used to implement the process. Experiments show that we can obtain the optimal parameter values for every benchmark, and Olden benchmarks partitioned with the optimized parameter values deliver a performance improvement of 3.00% on a 4-core platform compared with a machine learning based approach, and 8.92% compared with a heuristics-based approach.

  • Liang-fang QIAN,Sen-lin ZHANG,Mei-qin LIU

    Long propagation delay, limited bandwidth, and high bit error rate pose great challenges in media access control (MAC) protocol design for underwater acoustic networks. A MAC protocol called slotted floor acquisition multiple access (slotted-FAMA) suitable for underwater acoustic networks is proposed and analyzed. This FAMA based protocol adds a time slot mechanism to avoid DATA packet collisions. However, slotted-FAMA is not suitable for dense networks since the multiple request-to-send (RTS) attempts problem in dense networks is serious and greatly limits the network throughput. To overcome this drawback, this paper proposes a slotted-FAMA based MAC protocol for underwater acoustic networks, called RC-SFAMA. RC-SFAMA introduces an RTS competition mechanism to keep the network from high frequency of backoff caused by the multiple RTS attempts problem. Via the RTS competition mechanism, useful data transmission can be completed successfully when the situation of multiple RTS attempts occurs. Simulation results show that RC-SFAMA increases the network throughput efficiency as compared with slotted-FAMA, and minimizes the energy consumption.

  • Yang CHEN,Zheng QIN

    We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sampling for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By compositing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas’s and Piella’s metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best performance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.

  • Li-gang MA,Jin-song DENG,Huai YANG,Yang HONG,Ke WANG

    The Chinese ZY-1 02C satellite is one of the most advanced high-resolution earth observation systems designed for terrestrial resource monitoring. Its capability for comprehensive landscape classification, especially in urban areas, has been under constant study. In view of the limited spectral resolution of the ZY-1 02C satellite (three bands), and the complexity and heterogeneity across urban environments, we attempt to test its performance of urban landscape classification by combining a multivariable model with an object-oriented approach. The multiple variables including spectral reflection, texture, spatial autocorrelation, impervious surface fraction, vegetation, and geometry indexes were first calculated and selected using forward stepwise linear discriminant analysis and applied in the following object-oriented classification process. Comprehensive accuracy assessment which adopts traditional error matrices with stratified random samples and polygon area consistency (PAC) indexes was then conducted to examine the real area agreement between a classified polygon and its references. Results indicated an overall classification accuracy of 92.63% and a kappa statistic of 0.9124. Furthermore, the proposed PAC index showed that more than 82% of all polygons were correctly classified. Misclassification occurred mostly between residential area and barren/farmland. The presented method and the Chinese ZY-1 02C satellite imagery are robust and effective for urban landscape classification.

  • Tang-tang GUO,Xing-liang LIU,Shi-qiang HAO,Chi ZHANG,Xiang-ning HE

    For low power dielectric barrier discharge (DBD) used in small-size material treatment or portable devices, highstep transformer parasitic capacitance greatly influences the performance of the resonant converter as it is of the same order of magnitude as the equivalent capacitance of DBD load. In this paper, steady-state analysis of the low power DBD is presented, considering the inevitable parasitic capacitance of the high-step transformer. The rectifier-compensated first harmonic approximation (RCFHA) is applied to linearize the equivalent load circuit of DBD at low frequency and the derived expressions are accurate and convenient for the analysis and design of the power supply. Based on the proposed linear equivalent load circuit, the influence of transformer parasitic capacitance on the key parameters, including the frequency range and the applied electrode voltage, is discussed when the power is regulated with pulse frequency modulation (PFM). Also, a design procedure is presented based on the derived expressions. A prototype is constructed according to the design results and the accuracy of the design is verified by experimental results.