Gradient-based compressive image fusion

Yang CHEN, Zheng QIN

PDF(2036 KB)
PDF(2036 KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (3) : 227-237. DOI: 10.1631/FITEE.1400217

Gradient-based compressive image fusion

Author information +
History +

Abstract

We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sampling for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By compositing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas’s and Piella’s metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best performance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.

Keywords

Compressive sensing (CS) / Image fusion / Gradient-based image fusion / CS-based image fusion

Cite this article

Download citation ▾
Yang CHEN, Zheng QIN. Gradient-based compressive image fusion. Front.Inform.Technol.Electron.Eng, 2015, 16(3): 227‒237 https://doi.org/10.1631/FITEE.1400217

References

[1]
Amolins, K., Zhang, Y., Dare, P., 2007. Wavelet based image fusion techniques—an introduction, review and comparison. ISPRS J. Photogram. Remote Sens., 62(4): 249-263. [
CrossRef Google scholar
[2]
Byeungwoo, J., Landgrebe, D.A., 1999. Decision fusion approach for multitemporal classification. IEEE Trans. Geosci. Remote Sens., 37(3): 1227-1233. [
CrossRef Google scholar
[3]
Candès, E.J., Romberg, J., 2005. l1-Magic: Recovery of Sparse Signals via Convex Programming. Available from http://www.acm.caltech.edu/l1magic/
[4]
Candès, E.J., Tao, T., 2006. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory, 52(12): 5406-5425. [
CrossRef Google scholar
[5]
Candès, E.J., Wakin, M.B., 2008. An introduction to compressive sampling. IEEE Signal Process. Mag., 25(2): 21-30. [
CrossRef Google scholar
[6]
Chen, R.Y., Li, S., Yang, R., , 2008. Multi-focus images fusion based on data assimilation and genetic algorithm. Proc. Int. Conf. on Computer Science and Software Engineering, p.249-252. [
CrossRef Google scholar
[7]
Chen, S.S., Donoho, D.L., Saunders, M.A., 1998. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20(1): 33-61. [
CrossRef Google scholar
[8]
Ding, M., Wei, L., Wang, B.F., 2013. Research on fusion method for infrared and visible images via compressive sensing. Infrared Phys. Technol., 57: 56-67. [
CrossRef Google scholar
[9]
Do, T.T., Lu, G., Nguyen, N.H., , 2012. Fast and efficient compressive sensing using structurally random matrices. IEEE Trans. Signal Process., 60(1): 139-154. [
CrossRef Google scholar
[10]
Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inform. Theory, 52(4): 1289-1306. [
CrossRef Google scholar
[11]
Duarte, M.F., Davenpot, M.A., Takhar, D., , 2008. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag., 25(2): 83-91. [
CrossRef Google scholar
[12]
Figueiredo, M.A.T., Nowak, R.D., Wright, S.J., 2007. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Signal Process., 1(4): 586-597. [
CrossRef Google scholar
[13]
Han, J.J., Loffeld, O., Hartmann, K., , 2010. Multi image fusion based on compressive sensing. Proc. Int. Conf. on Audio Language and Image Processing, p.1463-1469. [
CrossRef Google scholar
[14]
Jolliffe, I.T., 1986. Principal Component Analysis. Springer.
[15]
Kang, B., Zhu, W.P., Yan, J., 2013. Fusion framework for multifocus images based on compressed sensing. IET Image Process., 7(4): 290-299. [
CrossRef Google scholar
[16]
Li, S.T., Yang, B., 2008. Multifocus image fusion by combining curvelet and wavelet transform. Patt. Recog. Lett., 29(9): 1295-1301. [
CrossRef Google scholar
[17]
Li, S.T., Kwok, J.T.Y., Tsang, I.W., , 2004. Fusing images with different focuses using support vector machines. IEEE Trans. Neur. Netw., 15(6): 1555-1561. [
CrossRef Google scholar
[18]
Li, X., Qin, S.Y., 2011. Efficient fusion for infrared and visible images based on compressive sensing principle. IET Image Process., 5(2): 141-147. [
CrossRef Google scholar
[19]
Liu, Z., Tsukada, K., Hanasaki, K., , 2001. Image fusion by using steerable pyramid. Patt. Recog. Lett., 22(9): 929-939. [
CrossRef Google scholar
[20]
Luo, X.Y., Zhang, J., Yang, J.Y., , 2009. Image fusion in compressed sensing. Proc. 16th IEEE Int. Conf. on Image Processing, p.2205-2208. [
CrossRef Google scholar
[21]
Pajares, G., de la Cruz, J.M., 2004. A wavelet-based image fusion tutorial. Patt. Recog., 37(9): 1855-1872. [
CrossRef Google scholar
[22]
Petrović, V.S., Xydeas, C.S., 2004. Gradient-based multiresolution image fusion. IEEE Trans. Image Process., 13(2): 228-237. [
CrossRef Google scholar
[23]
Piella, G., Heijmans, H., 2003. A new quality metric for image fusion. Proc. Int. Conf. on Image Processing, p.173-176. [
CrossRef Google scholar
[24]
Qu, G.H., Zhang, D.L., Yan, P.F., 2002. Information measure for performance of image fusion. Electron. Lett., 38(7): 313-315. [
CrossRef Google scholar
[25]
Romberg, J., 2008. Imaging via compressive sampling. IEEE Signal Process. Mag., 25(2): 14-20. [
CrossRef Google scholar
[26]
Ross, A.A., Govindarajan, R., 2005. Feature level fusion of hand and face biometrics. Proc. SPIE, p.196-204. [
CrossRef Google scholar
[27]
Shi, W.Z., Zhu, C.Q., Tian, Y., , 2005. Wavelet-based image fusion and quality assessment. Int. J. Appl. Earth Observ. Geoinform., 6(3-4): 241-251. [
CrossRef Google scholar
[28]
Smith, L.I., 2002. A Tutorial on Principal Components Analysis. Available from www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.
[29]
Tropp, J., Gilbert, A.C., 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12): 4655-4666. [
CrossRef Google scholar
[30]
Wan, T., Qin, Z.C., 2011. An application of compressive sensing for image fusion. Int. J. Comput. Math., 88(18): 3-9. [
CrossRef Google scholar
[31]
Wang, R., Du, L.F., 2014. Infrared and visible image fusion based on random projection and sparse representation. Int. J. Remote Sens., 35(5): 1640-1652. [
CrossRef Google scholar
[32]
Wang, Y., Yang, J.F., Yin, W., , 2008. A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Image Sci., 1(3): 248-272. [
CrossRef Google scholar
[33]
Xydeas, C.S., Petrović, V., 2000. Objective image fusion performance measure. Electron. Lett., 36(4): 308-309. [
CrossRef Google scholar
[34]
Yang, X.H., Jin, H.Y., Jiao, L.C., 2007. Adaptive image fusion algorithm for infrared and visible light images based on DT-CWT. J. Infrared Millim. Waves, 26(6): 419-424 (in Chinese).
[35]
Yang, Y., Han, C.Z., Kang, X., , 2007. An overview on pixel-level image fusion in remote sensing. Proc. IEEE Int. Conf. on Automation and Logistics, p.2339-2344. [
CrossRef Google scholar
[36]
Zheng, Y.Z., Qin, Z., 2009. Region-based image fusion method using bidimensional empirical mode decomposition. J. Electron. Imag., 18(1): 013008. [
CrossRef Google scholar
PDF(2036 KB)

Accesses

Citations

Detail

Sections
Recommended

/