Gradient-based compressive image fusion
Yang CHEN, Zheng QIN
Gradient-based compressive image fusion
We present a novel image fusion scheme based on gradient and scrambled block Hadamard ensemble (SBHE) sampling for compressive sensing imaging. First, source images are compressed by compressive sensing, to facilitate the transmission of the sensor. In the fusion phase, the image gradient is calculated to reflect the abundance of its contour information. By compositing the gradient of each image, gradient-based weights are obtained, with which compressive sensing coefficients are achieved. Finally, inverse transformation is applied to the coefficients derived from fusion, and the fused image is obtained. Information entropy (IE), Xydeas’s and Piella’s metrics are applied as non-reference objective metrics to evaluate the fusion quality in line with different fusion schemes. In addition, different image fusion application scenarios are applied to explore the scenario adaptability of the proposed scheme. Simulation results demonstrate that the gradient-based scheme has the best performance, in terms of both subjective judgment and objective metrics. Furthermore, the gradient-based fusion scheme proposed in this paper can be applied in different fusion scenarios.
Compressive sensing (CS) / Image fusion / Gradient-based image fusion / CS-based image fusion
[1] |
Amolins, K., Zhang, Y., Dare, P., 2007. Wavelet based image fusion techniques—an introduction, review and comparison. ISPRS J. Photogram. Remote Sens., 62(4): 249-263. [
CrossRef
Google scholar
|
[2] |
Byeungwoo, J., Landgrebe, D.A., 1999. Decision fusion approach for multitemporal classification. IEEE Trans. Geosci. Remote Sens., 37(3): 1227-1233. [
CrossRef
Google scholar
|
[3] |
Candès, E.J., Romberg, J., 2005. l1-Magic: Recovery of Sparse Signals via Convex Programming. Available from http://www.acm.caltech.edu/l1magic/
|
[4] |
Candès, E.J., Tao, T., 2006. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory, 52(12): 5406-5425. [
CrossRef
Google scholar
|
[5] |
Candès, E.J., Wakin, M.B., 2008. An introduction to compressive sampling. IEEE Signal Process. Mag., 25(2): 21-30. [
CrossRef
Google scholar
|
[6] |
Chen, R.Y., Li, S., Yang, R.,
CrossRef
Google scholar
|
[7] |
Chen, S.S., Donoho, D.L., Saunders, M.A., 1998. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20(1): 33-61. [
CrossRef
Google scholar
|
[8] |
Ding, M., Wei, L., Wang, B.F., 2013. Research on fusion method for infrared and visible images via compressive sensing. Infrared Phys. Technol., 57: 56-67. [
CrossRef
Google scholar
|
[9] |
Do, T.T., Lu, G., Nguyen, N.H.,
CrossRef
Google scholar
|
[10] |
Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inform. Theory, 52(4): 1289-1306. [
CrossRef
Google scholar
|
[11] |
Duarte, M.F., Davenpot, M.A., Takhar, D.,
CrossRef
Google scholar
|
[12] |
Figueiredo, M.A.T., Nowak, R.D., Wright, S.J., 2007. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Signal Process., 1(4): 586-597. [
CrossRef
Google scholar
|
[13] |
Han, J.J., Loffeld, O., Hartmann, K.,
CrossRef
Google scholar
|
[14] |
Jolliffe, I.T., 1986. Principal Component Analysis. Springer.
|
[15] |
Kang, B., Zhu, W.P., Yan, J., 2013. Fusion framework for multifocus images based on compressed sensing. IET Image Process., 7(4): 290-299. [
CrossRef
Google scholar
|
[16] |
Li, S.T., Yang, B., 2008. Multifocus image fusion by combining curvelet and wavelet transform. Patt. Recog. Lett., 29(9): 1295-1301. [
CrossRef
Google scholar
|
[17] |
Li, S.T., Kwok, J.T.Y., Tsang, I.W.,
CrossRef
Google scholar
|
[18] |
Li, X., Qin, S.Y., 2011. Efficient fusion for infrared and visible images based on compressive sensing principle. IET Image Process., 5(2): 141-147. [
CrossRef
Google scholar
|
[19] |
Liu, Z., Tsukada, K., Hanasaki, K.,
CrossRef
Google scholar
|
[20] |
Luo, X.Y., Zhang, J., Yang, J.Y.,
CrossRef
Google scholar
|
[21] |
Pajares, G., de la Cruz, J.M., 2004. A wavelet-based image fusion tutorial. Patt. Recog., 37(9): 1855-1872. [
CrossRef
Google scholar
|
[22] |
Petrović, V.S., Xydeas, C.S., 2004. Gradient-based multiresolution image fusion. IEEE Trans. Image Process., 13(2): 228-237. [
CrossRef
Google scholar
|
[23] |
Piella, G., Heijmans, H., 2003. A new quality metric for image fusion. Proc. Int. Conf. on Image Processing, p.173-176. [
CrossRef
Google scholar
|
[24] |
Qu, G.H., Zhang, D.L., Yan, P.F., 2002. Information measure for performance of image fusion. Electron. Lett., 38(7): 313-315. [
CrossRef
Google scholar
|
[25] |
Romberg, J., 2008. Imaging via compressive sampling. IEEE Signal Process. Mag., 25(2): 14-20. [
CrossRef
Google scholar
|
[26] |
Ross, A.A., Govindarajan, R., 2005. Feature level fusion of hand and face biometrics. Proc. SPIE, p.196-204. [
CrossRef
Google scholar
|
[27] |
Shi, W.Z., Zhu, C.Q., Tian, Y.,
CrossRef
Google scholar
|
[28] |
Smith, L.I., 2002. A Tutorial on Principal Components Analysis. Available from www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.
|
[29] |
Tropp, J., Gilbert, A.C., 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12): 4655-4666. [
CrossRef
Google scholar
|
[30] |
Wan, T., Qin, Z.C., 2011. An application of compressive sensing for image fusion. Int. J. Comput. Math., 88(18): 3-9. [
CrossRef
Google scholar
|
[31] |
Wang, R., Du, L.F., 2014. Infrared and visible image fusion based on random projection and sparse representation. Int. J. Remote Sens., 35(5): 1640-1652. [
CrossRef
Google scholar
|
[32] |
Wang, Y., Yang, J.F., Yin, W.,
CrossRef
Google scholar
|
[33] |
Xydeas, C.S., Petrović, V., 2000. Objective image fusion performance measure. Electron. Lett., 36(4): 308-309. [
CrossRef
Google scholar
|
[34] |
Yang, X.H., Jin, H.Y., Jiao, L.C., 2007. Adaptive image fusion algorithm for infrared and visible light images based on DT-CWT. J. Infrared Millim. Waves, 26(6): 419-424 (in Chinese).
|
[35] |
Yang, Y., Han, C.Z., Kang, X.,
CrossRef
Google scholar
|
[36] |
Zheng, Y.Z., Qin, Z., 2009. Region-based image fusion method using bidimensional empirical mode decomposition. J. Electron. Imag., 18(1): 013008. [
CrossRef
Google scholar
|
/
〈 | 〉 |