Interpolation of a spline developable surface between a curve and two rulings
Alicia CANTÓN, Leonardo FERNÁNDEZ-JAMBRINA
Interpolation of a spline developable surface between a curve and two rulings
In this paper we address the problem of interpolating a spline developable patch bounded by a given spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a second spline curve is to be given. Up to now this interpolation problem could be solved, but without the possibility of choosing both endpoints for the rulings. We circumvent such difficulty by resorting to degree elevation of the developable surface. This is useful for solving not only this problem, but also other problems dealing with triangular developable patches.
Developable surfaces / Spline surfaces / Blossoms
[1] |
Aumann, G., 2003. A simple algorithm for designing developable Bézier surfaces. Comput. Aided Geom. Des., 20(8-9): 601-619. [
CrossRef
Google scholar
|
[2] |
Aumann, G., 2004. Degree elevation and developable Bézier surfaces. Comput. Aided Geom. Des., 21(<?Pub Caret1?>7): 661-670. [
CrossRef
Google scholar
|
[3] |
Bodduluri, R.M.C., Ravani, B., 1993. Design of developable surfaces using duality between plane and point geometries. Comput.-Aided Des., 25(10): 621-632. [
CrossRef
Google scholar
|
[4] |
Chalfant, J.S., Maekawa, T., 1998. Design for manufacturing using B-spline developable surfaces. J. Ship Res., 42(3): 207-215.
|
[5] |
Chu, C.H., Séquin, C.H., 2002. Developable Bézier patches: properties and design. Comput.-Aided Des., 34(7): 511-527. [
CrossRef
Google scholar
|
[6] |
Chu, C.H., Wang, C.C.L., Tsai, C.R., 2008. Computer aided geometric design of strip using developable Bézier patches. Comput. Ind., 59(6): 601-611. [
CrossRef
Google scholar
|
[7] |
Farin, G., 1986. Triangular Bernstein-Bézier patches. Comput. Aided Geom. Des., 3(2): 83-127. [
CrossRef
Google scholar
|
[8] |
Farin, G., 2002. Curves and Surfaces for CAGD: a Practical Guide. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
|
[9] |
Fernández-Jambrina, L., 2007. B-spline control nets for developable surfaces. Comput. Aided Geom. Des., 24(4): 189-199. [
CrossRef
Google scholar
|
[10] |
Frey, W.H., Bindschadler, D., 1993. Computer Aided Design of a Class of Developable Bézier Surfaces. Technical Report, GM Research Publication R&D-8057.
|
[11] |
Hu, G., Ji, X., Qin, X., 2012. Geometric design and shape adjustment for developable B-spline surfaces with multiple shape parameters. J. Appl. Sci.-Electron. Inform. Eng., 30(3): 324-330.
|
[12] |
Juhász, I., Róth, á., 2008. Bézier surfaces with linear isoparametric lines. Comput. Aided Geom. Des., 25(6): 385-396. [
CrossRef
Google scholar
|
[13] |
Kilgore, U., 1967. Developable Hull Surfaces. Fishing Boats of the World, Volume 3. Fishing News Books Ltd., Surrey, p.425-431.
|
[14] |
Lang, J., Röchel, O., 1992. Developable (1, n)-Bézier surfaces. Comput. Aided Geom. Des., 9(4): 291-298. [
CrossRef
Google scholar
|
[15] |
Leopoldseder, S., 2001. Algorithms on cone spline surfaces and spatial osculating arc splines. Comput. Aided Geom. Des., 18(6): 505-530. [
CrossRef
Google scholar
|
[16] |
Liu, Y.J., Tang, K., Gong, W.Y.,
CrossRef
Google scholar
|
[17] |
Mancewicz, M.J., Frey, W.H., 1992. Developable Surfaces: Properties, Representations and Methods of Design. Technical Report, GM Research Publication GMR-7637.
|
[18] |
Pérez, F., Suárez, J.A., 2007. Quasi-developable B-spline surfaces in ship hull design. Comput.-Aided Des., 39(10): 853-862. [
CrossRef
Google scholar
|
[19] |
Pérez-Arribas, F., Suárez-Suárez, J.A., Fernández-Jambrina, L., 2006. Automatic surface modelling of a ship hull. Comput.-Aided Des., 38(6): 584-594. [
CrossRef
Google scholar
|
[20] |
Peternell, M., 2004. Developable surface fitting to point clouds. Comput. Aided Geom. Des., 21(8): 785-803. [
CrossRef
Google scholar
|
[21] |
Postnikov, M.M., 1979. Lectures in Geometry: Linear Algebra and Differential Geometry. “Nauka”, Moscow.
|
[22] |
Pottmann, H., Farin, G., 1995. Developable rational Bézier and B-spline surfaces. Comput. Aided Geom. Des., 12(5): 513-531. [
CrossRef
Google scholar
|
[23] |
Pottmann, H., Wallner, J., 1999. Approximation algorithms for developable surfaces. Comput. Aided Geom. Des., 16(6): 539-556. [
CrossRef
Google scholar
|
[24] |
Pottmann, H., Wallner, J., 2001. Computational Line Geometry. Springer-Verlag, Berlin, p.327-422.
|
[25] |
Struik, D.J., 1988. Lectures on Classical Differential Geometry. Dover Publications Inc., New York, p.66-73.
|
[26] |
Zeng, L., Liu, Y.J., Chen, M.,
CrossRef
Google scholar
|
/
〈 | 〉 |