Recent Advances in Metal-Mediated Carbon-Carbon Bond Cleavages of Benzenoid Hydrocarbons

Sivakumar Ragupathy , John A. Gladysz

Chinese Journal of Chemistry ›› 2025, Vol. 43 ›› Issue (21) : 2803 -2809.

PDF
Chinese Journal of Chemistry ›› 2025, Vol. 43 ›› Issue (21) : 2803 -2809. DOI: 10.1002/cjoc.70155
Emerging Topic

Recent Advances in Metal-Mediated Carbon-Carbon Bond Cleavages of Benzenoid Hydrocarbons

Author information +
History +
PDF

Abstract

A variety of metal coordination modes that may provide carbon-carbon bond cleavage pathways in benzene and benzenoid hydrocarbons are summarized in a rubric. Some of these are evident in recently published work, and others represent challenges for future research. The first category includes thermolyses and ring opening metathesis polymerization of iridium η4 adducts, aluminum(I) additions that first yield η2 1,2- or 1,4 adducts, intramolecular C=C metatheses that involve initial 1,2 Mo=C additions, multimetallic activation via dititanium η3 binding modes, and a one-off lutetium mediated process that defies simple classification. However, few of these transformations are currently catalytic. The interpretation of most has been aided by DFT calculations, and related lines of investigation are briefly treated.

Keywords

C=C metathesis / Benzene activation / Büchner reaction / Metalla(norcaradiene) / Benzene ligands

Cite this article

Download citation ▾
Sivakumar Ragupathy, John A. Gladysz. Recent Advances in Metal-Mediated Carbon-Carbon Bond Cleavages of Benzenoid Hydrocarbons. Chinese Journal of Chemistry, 2025, 43(21): 2803-2809 DOI:10.1002/cjoc.70155

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Keaveney, W. P.; Rush, R. V.; Pappas, J. J. Glyoxal from Ozonolysis of Benzene. Ind. Eng. Chem. Prod. Res. Dev. 1969, 8, 89-92.

[2]

(a) Scott, L. T. Azulenes: a Synthesis Based on Intramolecular Carbene Addition. J. Chem. Soc., Chem. Commun. 1973, 882-883; (b) Anciaux, A. J.; Demonceau, A.; Noels, A. F.; Hubert, A. J.; Warin, R.; Teyssié, P. Transition-Metal-Catalyzed Reaction of Diazo Compounds. 2. Addition to Aromatic Molecules: Catalysis of Buchner's Synthesis of Cycloheptatrienes. J. Org. Chem. 1981, 46, 873‒876.

[3]

(a) Shi, C.-Y.; Zhu, G.-Y.; Xu, Y.; Teng, M.-Y.; Ye, L.-W. Recent advances in catalytic asymmetric Büchner reaction. Chin. Chem. Lett. 2023, 34, 108441; (b) Zheng, Y.-X.; Liu, L.-G.; Hu, T.-Q.; Li, X.; Xu, Z.; Hong, X.; Lu, X.; Zhou, B.; Ye, L.-W. Asymmetric Büchner reaction and arene cyclopropanation via copper-catalyzed cyclization of diynes. Nat. Commun. 2024, 15, 9277.

[4]

(a) Fraile, J. M.; Garcia, J. I.; Martinez-Merino, V.; Mayoral, J. A.; Salvatella, L. Theoretical (DFT) Insights into the Mechanism of Copper-Catalyzed Cyclopropanation Reactions. Implications for Enantioselective Catalysis. J. Am. Chem. Soc. 2001, 125, 7616-7625; (b) Straub, B. F.; Gruber, I.; Rominger, F.; Hofmann, P. Mechanism of copper(I)-catalyzed cyclopropanation: a DFT study calibrated with copper(I) alkene complexes. J. Organomet. Chem. 2003, 684, 124‒143

[5]

Harman, W. D.The Dearomatization of Arenes by Dihapto-Coordination. In Transition Metal Arene π-Complexes in Organic Synthesis and Catalysis, Ed.: Kündig E. P., Springer, Berlin, 2004, Vol. 7, pp. 95-127.

[6]

Zeits, P. D.; Fiedler, T.; Gladysz, J. A. Ring Opening Metathesis Polymerization of an η4 Benzene Complex: A Direct Synthesis of a Polyacetylene with a Regular Pattern of π Bound Metal Fragments. Chem. Commun. 2012, 48, 7925-7927.

[7]

(a) Jakoobi M.; Halcovitch N.; Whitehead G. F. S.; Sergeev, A. G. Selective Arene Cleavage by Direct Insertion of Iridium into the Aromatic Ring. Angew. Chem. Int. Ed. 2017, 56, 3266-3269; Angew. Chem. 2017, 129, 3314-3317; (b) Jakoobi, M.; Tian, Y.; Boulatov, R.; Sergeev, A. G. Reversible Insertion of Ir into Arene Ring C-C Bonds with Improved Regioselectivity at a Higher Reaction Temperature. J. Am. Chem. Soc. 2019, 141, 6048‒6053; (c) Tian, Y.; Jakoobi, M.; Boulatov, R.; Sergeev, A. G. Selective Cleavage of Unactivated Arene Ring C–C Bonds by Iridium: Key Roles of Benzylic C–H Activation and Metal–Metal Cooperativity Chem. Sci. 2021, 12, 3568‒3579.

[8]

Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Reversible, Room-Temperature C-C Bond Activation of Benzene by an Isolable Metal Complex. J. Am. Chem. Soc. 2019, 141, 11000-11003.

[9]

(a) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. Excited-State Reactions of an Isolable Silylene with Aromatic Compounds. J. Am. Chem. Soc. 2002, 124, 3830-3831; (b) Zhu, H.; Kostenko, A.; Franz, D.; Hanusch, F.; Inoue, S. Room Temperature Intermolecular Dearomatization of Arenes by an Acyclic Iminosilylene. J. Am. Chem. Soc. 2023, 145, 1011‒1021.

[10]

Hutskalova, V.; Sparr, C. Aromatic Ring-Opening Metathesis. Nature 2025, 638, 697-703.

[11]

Liu, W.; Wu, P.; Liang, Y.; Wei, J.; Luo, G.; Zhang, W.-X. Rare-Earth Metal-Enabled Ring-Opening Metathesis of Benzene. J. Am. Chem. Soc. 2025, 147, 1300-1306.

[12]

Kong, R.Y.: Crimmin, M. R. Chemoselective C-C σ-Bond Activation of the Most stable Ring in Biphenylene. Angew. Chem. Int. Ed. 2021, 60, 2619-2623.

[13]

Zhang, X.; Liu, L. L. Modulating the Frontier Orbitals of an Aluminylene for Facile Dearomatization of Inert Arenes. Angew. Chem. Int. Ed. 2022, 61, e202116658.

[14]

Koshino, K.; Kinjo, R. A. A Highly Strained Al-Al σ-Bond Activation of the Most stable Ring in Biphenylene. J. Am. Chem. Soc. 2021, 143, 18172-18180.

[15]

Zhu, M.; Chai, Z.; Lv, Z.-J.; Li, T.; Liu, W.; Wei, J.; Zhang, W.-X. Selective Cleavage of the Strong or Weak C-C Bonds in Biphenylene Enabled by Rare-Earth Metals. J. Am. Chem. Soc. 2021, 143, 6633-6638.

[16]

(a) Hu, S.; Shima, T.; Hou, Z. Carbon-Carbon Bond Cleavage and Rearrangement Of Benzene by a Trinuclear Titanium Hydride. Nature 2014, 512, 413-415; (b) Kang, X.; Luo, G.; Luo, L.; Hu, S.; Luo, Y.; Hou, Z. Mechanistic Insights into Ring Cleavage and Contraction of Ben-zene over a Titanium Hydride Cluster. J. Am. Chem. Soc. 2016, 138, 11550‒11559.

[17]

Sattler, A.; Parkin, G. Cleaving carbon-carbon bonds by inserting tungsten into unstrained aromatic rings. Nature 2011, 463, 522-526.

[18]

(a) Qui, X.; Sang, Y.; Wu, H.; Xue, X.-S.; Yan, Z.; Wang, Y.; Cheng, Z.; Wang, X.; Tan, H.; Song, S.; Zhang, G.; Zhang, X.; Houk, K. N.; Jiao, N. Cleaving Arene Rings for Acyclic Alkenylnitrile Synthesis. Nature 2021, 597, 64-69; (b) Cheng, Z.; Xu, H.; Hu, Z.; Zhu, M.; Houk, K. N.; Xue, X.-S.; Jiao, N. Carbene-Assisted Arene Ring-Opening. J. Am. Chem. Soc. 2024, 146, 1693‒1697.

[19]

This set of articles and reference 20 is comprised of suggestions offered by reviewers and is not intended to be comprehensive; (a) Pa-tel, S. C.; Burns, N. Z. Conversion of Aryl Azides to Aminopyridines. J. Am. Chem. Soc. 2022, 144, 17797‒17802; (b) Matador, E.; Tilby, M. J.; Saridakis, I.; Pedrón, M.; Tomczak, D.; Llaveria, J.; Atodiresei, I.; Me-rino, P.; Ruffoi, A.; Leonori, D. A Photochemical strategy for the Con-version of Nitroarenes into Rigidified Pyrrolidine Analogues. J. Am. Chem. Soc. 2023, 145, 27810‒27820; (c) Mykura, R.; Sánchez-Bento, R.; Matador, E.; Duong, V. K.; Varela, A.; Angelini, L.; Carbajo, R. J.; Llaveria, J.; Ruffoni, A.; Leonori, D. Synthesis of polysubstituted aze-panes by dearomative ring expansion of nitroarenes. Nat. Chem. 2024, 16, 771‒779.

[20]

Oliver, W. J.; Blyszczyk, P.; Arpa, E. M.; Hitoshio, K.; Gomez-Mendoza, M.; de la Peña O'Shea, V.; Marchand, I.; Poisson, T.; Ruffoni, A.; Leonori, D. Excited-state configuration of nitroarenes enables oxidative cleavage of aromatics over alkenes. Science 2025, 387, 1167-1174.

RIGHTS & PERMISSIONS

2025 The Author(s). Chinese Journal of Chemistry published by SIOC, CAS, Shanghai and Wiley-VCH GmbH

AI Summary AI Mindmap
PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/