Non-Halogenated Solvent Processed Ternary All-Polymer Solar Cell with PCE of 18.55% Enabled by Two Compatible Polymer Acceptors

Rouren Chen , Tianyi Zhang , Qiqing Ruan , Lunbi Wu , Zhixuan Xu , Yuan Su , Zhixiong Cao , Qingduan Li , Biao Xiao , Ruijie Ma , Yue-Peng Cai , Tao Jia , Shengjian Liu , Gang Li

Chinese Journal of Chemistry ›› 2025, Vol. 43 ›› Issue (17) : 2120 -2128.

PDF
Chinese Journal of Chemistry ›› 2025, Vol. 43 ›› Issue (17) : 2120 -2128. DOI: 10.1002/cjoc.70075
Comprehensive Report

Non-Halogenated Solvent Processed Ternary All-Polymer Solar Cell with PCE of 18.55% Enabled by Two Compatible Polymer Acceptors

Author information +
History +
PDF

Abstract

Herein, a theory-guided ternary construction case on boosting power conversion efficiency (PCE) for all-polymer solar cell (all-PSC) is reported, where guest acceptor's characteristics include high miscibility with host polymer acceptor, significantly larger optical bandgap, and improved luminescence. Consequently, with only 10 wt% PFFO-Th (third component) addition, the PCE of binary control is promoted to 18.55% from 16.69%, a 11.1% relative increase, demonstrating the great effectiveness of this ternary strategy. Besides, the realized 18.55% efficiency is at state-of-the-art level of all-PSCs processed by ortho-xylene, a widely acknowledged green non- halogenated solvent by the field. This study shares new thought on designing high-performance photovoltaic devices with reduced energy losses and favorable charge dynamics, which would nourish future development on all-PSCs, and even other organic electronics.

Keywords

All-polymer solar cells / Power conversion efficiency / Ternary construction / Guest selection / Polymer acceptors / Nonradiative recombination

Cite this article

Download citation ▾
Rouren Chen, Tianyi Zhang, Qiqing Ruan, Lunbi Wu, Zhixuan Xu, Yuan Su, Zhixiong Cao, Qingduan Li, Biao Xiao, Ruijie Ma, Yue-Peng Cai, Tao Jia, Shengjian Liu, Gang Li. Non-Halogenated Solvent Processed Ternary All-Polymer Solar Cell with PCE of 18.55% Enabled by Two Compatible Polymer Acceptors. Chinese Journal of Chemistry, 2025, 43(17): 2120-2128 DOI:10.1002/cjoc.70075

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee, C.; Lee, S.; Kim, G.-U.; Lee, W.; Kim, B. J. Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. Chem. Rev. 2019, 119, 8028-8086.

[2]

Zhang, Z.-G.; Li, Y. Polymerized Small-Molecule Acceptors for High- Performance All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2021, 60, 4422-4433.

[3]

Bai, H.; Fan, Q.; Ma, R.; Guo, X.; Ma, W.; Zhang, M. Non-Fully Conjugated Photovoltaic Materials with Y-Series Acceptor Backbone for High-Performance Organic Solar Cells. Chin. J. Chem. 2024, 42, 1307-1318.

[4]

Pankow, R. M.; Wu, J.; Harbuzaru, A.; Kerwin, B.; Chen, Y.; Ortiz, R. P.; Facchetti, A.; Marks, T. J. All-Polymer Solar Cells Incorporating Readily Accessible Naphthalene Diimide and Isoindigo Acceptor Polymers for Improved Light Harvesting. Chem. Mater. 2022, 34, 3267-3279.

[5]

Ma, R.; Fan, Q.; Dela Peña, T. A.; Wu, B.; Liu, H.; Wu, Q.; Wei, Q.; Wu, J.; Lu, X.; Li, M.; Ma, W.; Li, G. Unveiling the Morphological and Physical Mechanism of Burn-in Loss Alleviation by Ternary Matrix toward Stable and Efficient All-Polymer Solar Cells. Adv. Mater. 2023, 35, 2212275.

[6]

Wang, Z.; Wang, X.; Tu, L.; Wang, H.; Du, M.; Dai, T.; Guo, Q.; Shi, Y.; Zhou, E. Dithienoquinoxalineimide-Based Polymer Donor Enables All-Polymer Solar Cells Over 19 % Efficiency. Angew. Chem. Int. Ed. 2024, 63, e202319755.

[7]

Meng, Y.; L, Tang; Xiao, M.; Zhou, W.; Li, N.; Jia, J.; Jia, T.; Su, W.; Bi, Z.; Peng, W.; Fan, B.; Jen, A. K. Y.; Ma, W.; Fan, Q. Efficient All-Polymer Solar Cells Enabled by a Novel Medium Bandgap Guest Acceptor. Chin. J. Chem. 2024, 42, 3559-3566.

[8]

Zhang, C.; Song, A.; Huang, Q.; Cao, Y.; Zhong, Z.; Liang, Y.; Zhang, K.; Liu, C.; Huang, F.; Cao, Y. All-Polymer Solar Cells and Photodetectors with Improved Stability Enabled by Terpolymers Containing Antioxidant Side Chains. Nano-Micro Lett. 2023, 15, 140.

[9]

Wang, T.; Chen, M.; Sun, R.; Min, J. Recent research progress of all-polymer solar cells based on PSMA-type polymer acceptors. Chem 2023, 9, 1702-1767.

[10]

Ma, R.; Li, H.; Dela Peña, T. A.; Xie, X.; Fong, P. W.-K.; Wei, Q.; Yan, C.; Wu, J.; Cheng, P.; Li, M.; Li, G. Tunable Donor Aggregation Dominance in a Ternary Matrix of All-Polymer Blends with Improved Efficiency and Stability. Adv. Mater. 2024, 36, 2304632.

[11]

Li, H.; Le, J.; Tan, H.; Hu, L.; Li, X.; Zhang, K.; Zeng, S.; Liu, Q.; Zhang, M.; Shi, L.; Cai, Z.; Liu, S.; Li, H.; Ye, L.; Hu, X.; Chen, Y. Synergistic Multimodal Energy Dissipation Enhances Certified Efficiency of Flexible Organic Photovoltaics beyond 19%. Adv. Mater. 2025, 37, 2411989.

[12]

Wu, X.; Xiao, B.; Sun, R.; Yang, X.; Zhang, M.; Gao, Y.; Xiao, B.; Papkovskaya, E. D.; Luponosov, Y.; Brabec, C. J.; Min, J. 19.46%-Efficiency all-polymer organic solar cells with excellent outdoor operating stability enabled by active layer reconstruction. Energy Environ. Sci. 2025, 18, 1812-1823.

[13]

An, M.; Liu, Q.; Jeong, S. Y.; Liu, B.; Huang, E.; Liang, Q.; Li, H.; Zhang, G.; Woo, H. Y.; Niu, L.; Guo, X.; Sun, H. A Fluorinated Imide-Functionalized Arene Enabling a Wide Bandgap Polymer Donor for Record-Efficiency All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2024, 63, e202410498.

[14]

Wang, J.; Li, Y.; Han, C.; Chen, L.; Bi, F.; Hu, Z.; Yang, C.; Bao, X.; Chu, J. All-polymer solar cells with 19% efficiency via introducing pincer- shaped non-covalent bond interactions. Energy Environ. Sci. 2024, 17, 4216-4227.

[15]

Wang, J.; Wang, Y.; Xian, K.; Qiao, J.; Chen, Z.; Bi, P.; Zhang, T.; Zheng, Z.; Hao, X.; Ye, L.; Zhang, S.; Hou, J. Regulating Phase Separation Kinetics for High-Efficiency and Mechanically Robust All-Polymer Solar Cells. Adv. Mater. 2024, 36, 2305424.

[16]

Guo, J.; Xia, X.; Qiu, B.; Zhang, J.; Qin, S.; Li, X.; Lai, W.; Lu, X.; Meng, L.; Zhang, Z.; Li, Y. Manipulating Polymer Backbone Configuration via Halogenated Asymmetric End-Groups Enables Over 18% Efficiency All-Polymer Solar Cells. Adv. Mater. 2023, 35, 2211296.

[17]

Ma, S.; Li, H.; Wu, W.; Gámez-Valenzuela, S.; Ma, R.; Bai, Q.; Zhong, J.; Jeong, S. Y.; Liu, Q.; Zhang, H.; Zhang, G.; Zhang, W.; Chen, J.; Huang, E.; Liu, B.; Feng, K.; Woo, H. Y.; Niu, L.; Sun, H.; Guo, X. Chlorinated Bithiophene Imide-Based n-Type Polymers: Synthesis, Structure-Property Correlations, and Applications in Organic Electronic Devices. Angew. Chem. Int. Ed. 2025, 64, e202423616.

[18]

Bai, H.; Fan, Q.; Ma, R.; Guo, X.; Ma, W.; Zhang, M. Non-Fully Conjugated Photovoltaic Materials with Y-Series Acceptor Backbone for High-Performance Organic Solar Cells. Chin. J. Chem. 2024, 42, 1307-1318.

[19]

Günther, M.; Kazerouni, N.; Blätte, D.; Perea, J. D.; Thompson, B. C.; Ameri, T. Models and mechanisms of ternary organic solar cells. Nat. Rev. Mater. 2023, 8, 456-471.

[20]

Ge, Z.; Qiao, J.; Li, Y.; Song, J.; Duan, X.; Fu, Z.; Hu, H.; Yang, R.; Yin, H.; Hao, X.; Sun, Y. Regulating Electron-Phonon Coupling by Solid Additive for Efficient Organic Solar Cells. Angew. Chem. Int. Ed. 2025, 64, e202413309.

[21]

Jiang, Y.; Sun, S.; Xu, R.; Liu, F.; Miao, X.; Ran, G.; Liu, K.; Yi, Y.; Zhang, W.; Zhu, X. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells. Nat. Energy 2024, 9, 975-986.

[22]

Chen, H.; Huang, Y.; Zhang, R.; Mou, H.; Ding, J.; Zhou, J.; Wang, Z.; Li, H.; Chen, W.; Zhu, J.; Cheng, Q.; Gu, H.; Wu, X.; Zhang, T.; Wang, Y.; Zhu, H.; Xie, Z.; Gao, F.; Li, Y.; Li, Y. Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation. Nat. Mater. 2025, 24, 444-453.

[23]

Luo, Z.; Wei, W.; Ma, R.; Ran, G.; Jee, M. H.; Chen, Z.; Li, Y.; Zhang, W.; Woo, H. Y.; Yang, C. Approaching 20% Efficiency in ortho-Xylene Processed Organic Solar Cells by a Benzo[a]phenazine-Core-Based 3D Network Acceptor with Large Electronic Coupling and Long Exciton Diffusion Length. Adv. Mater. 2024, 36, 2407517.

[24]

Wei, N.; Chen, J.; Cheng, Y.; Bian, Z.; Liu, W.; Song, H.; Guo, Y.; Zhang, W.; Liu, Y.; Lu, H.; Zhou, J.; Bo, Z. Constructing Multiscale Fibrous Morphology to Achieve 20% Efficiency Organic Solar Cells by Mixing High and Low Molecular Weight D18. Adv. Mater. 2024, 36, 2408934.

[25]

Gu, X.; Wei, Y.; Zeng, R.; Lv, J.; Hou, Y.; Yu, N.; Tan, S.; Wang, Z.; Li, C.; Tang, Z.; Peng, Q.; Liu, F.; Cai, Y.; Zhang, X.; Huang, H. Suppressing Exciton-Vibration Coupling via Intramolecular Noncovalent Interactions for Low-Energy-Loss Organic Solar Cells. Angew. Chem. Int. Ed. 2025, 64, e202418926.

[26]

Ma, R.; Li, H.; Dela Peña, T. A.; Wang, H.; Yan, C.; Cheng, P.; Wu, J.; Li, G. In-situ understanding on the formation of fibrillar morphology in green solvent processed all-polymer solar cells. Nat. Sci. Rev. 2024, 11, nwae384.

[27]

Guan, S.; Li, Y.; Bi, Z.; Lin, Y.; Fu, Y.; Wang, K.; Wang, M.; Ma, W.; Xia, J.; Ma, Z.; Tang, Z.; Lu, X.; Zuo, L.; Li, H.; Chen, H. Fine-tuning the hierarchical morphology of multi-component organic photovoltaics via a dual-additive strategy for 20.5% efficiency. Energy Environ. Sci. 2025, 18, 313-321.

[28]

Fan, B.; Gao, H.; Yu, L.; Li, R.; Wang, L.; Zhong, W.; Wang, Y.; Jiang, W.; Fu, H.; Chen, T.; Kan, B.; Tsang, S.-W.; Jen, A. K. Y. Local Structure- Induced Selective Interactions Enables High-Performance and Burn- in-Free Organic Photovoltaics. Angew. Chem. Int. Ed. 2025, 64, e202418439.

[29]

Sun, Y.; Wang, L.; Guo, C.; Xiao, J.; Liu, C.; Chen, C.; Xia, W.; Gan, Z.; Cheng, J.; Zhou, J.; Chen, Z.; Zhou, J.; Liu, D.; Wang, T.; Li, W. π-Extended Nonfullerene Acceptor for Compressed Molecular Packing in Organic Solar Cells To Achieve over 20% Efficiency. J. Am. Chem. Soc. 2024, 146, 12011-12019.

[30]

Chen, Z.; Ge, J.; Song, W.; Tong, X.; Liu, H.; Yu, X.; Li, J.; Shi, J.; Xie, L.; Han, C.; Liu, Q.; Ge, Z. 20.2% Efficiency Organic Photovoltaics Employing a π-Extension Quinoxaline-Based Acceptor with Ordered Arrangement. Adv. Mater. 2024, 36, 2406690.

[31]

Wang, Y.; Sun, K.; Li, C.; Zhao, C.; Gao, C.; Zhu, L.; Bai, Q.; Xie, C.; You, P.; Lv, J.; Sun, X.; Hu, H.; Wang, Z.; Hu, H.; Tang, Z.; He, B.; Qiu, M.; Li, S.; Zhang, G. A Novel Upside-Down Thermal Annealing Method Toward High-Quality Active Layers Enables Organic Solar Cells with Efficiency Approaching 20%. Adv. Mater. 2024, 36, 2411957.

[32]

Bin, H.; Zhang, P.; Gao, N.; Du, B.; Xu, Z.; Wu, S.; Zhu, K.; Ma, X.; Li, Y. Highly Ordered Polymorphism of Small Molecule Acceptor Delivering Efficient and Stable Binary Organic Solar Cells. Angew. Chem. Int. Ed. 2025, 64, e202424430.

[33]

Ling, Z.; Wu, J.; Jurado, J. P.; Petoukhoff, C. E.; Jeong, S. Y.; Naphade, D.; Babics, M.; Chang, X.; Faber, H.; Doukas, S.; Lidorikis, E.; Nugraha, M. I.; He, M.; Alqurashi, M.; Lin, Y.; Sun, X.; Hu, H.; Woo, H. Y.; De Wolf, S.; Tsetseris, L.; Laquai, F.; Yu, D.; Wang, E.; Anthopoulos, T. D. 20.5% efficient ternary organic photovoltaics using an asymmetric small-molecular acceptor to manipulate intermolecular packing and reduce energy losses. Mater. Sci. Eng. R Rep. 2025, 163, 100922.

[34]

Wang, J.; Wang, P.; Chen, T.; Zhao, W.; Wang, J.; Lan, B.; Feng, W.; Liu, H.; Liu, Y.; Wan, X.; Long, G.; Kan, B.; Chen, Y. Isomerism Effect of 3D Dimeric Acceptors for Non-Halogenated Solvent-Processed Organic Solar Cells with 20 % Efficiency. Angew. Chem. Int. Ed. 2025, 64, e202423562.

[35]

Zhou, K.; Han, D.; Xian, K.; Li, S.; Gao, M.; Zhang, K.; Zhao, B.; Li, X.; Chen, Y.; Geng, Y.; Ye, L. Simultaneously improved stretchability, stability, and output power in solar cells via entanglement control. Energy Environ. Sci. 2024, 17, 5950-5961.

[36]

Wang, Y.; Yu, J.; Zhang, R.; Yuan, J.; Hultmark, S.; Johnson, C. E.; Gallop, N. P.; Siegmund, B.; Qian, D.; Zhang, H.; Zou, Y.; Kemerink, M.; Bakulin, A. A.; Müller, C.; Vandewal, K.; Chen, X.-K.; Gao, F. Origins of the open-circuit voltage in ternary organic solar cells and design rules for minimized voltage losses. Nat. Energy 2023, 8, 978-988.

[37]

Yang, X.; Sun, R.; Wang, Y.; Chen, M.; Xia, X.; Lu, X.; Lu, G.; Min, J. Ternary All-Polymer Solar Cells with Efficiency up to 18.14% Employing a Two-Step Sequential Deposition. Adv. Mater. 2023, 35, 2209350.

[38]

Xu, W.; Tian, H.; Ni, Y.; Xu, Y.; Zhang, L.; Zhang, F.; Wu, S.; Young Jeong, S.; Huang, T.; Du, X.; Li, X.; Ma, Z.; Young Woo, H.; Zhang, J.; Ma, X.; Wang, J.; Zhang, F. Eco-friendly solvent-processed layer-by- layer ternary all-polymer solar cells exhibiting over 18.5% efficiency. Chem. Eng. J. 2024, 493, 152558.

[39]

Zhang, J.; Zhou, Q.; Xie, J.; Zhao, J.; Yu, J.; Zhang, K.; Jia, T.; Huang, F.; Cao, Y. Ternary Strategy Enables Non-Halogenated Solvent-Processed All-Polymer Solar Cells with High Efficiency Over 18%. Adv. Funct. Mater. 2024, 34, 2313722.

[40]

Lee, J.-W.; Kim, J.; Nguyen, T. H.-Q.; Lee, D. C.; Tan, Z.; Park, J.; Phan, T. N.-L.; Cho, S.; Kim, B. J. High efficiency and thermally stable ternary all-polymer solar cells achieved by alloyed vinyl-linked polymerized small-molecule acceptors. Nano Energy 2024, 122, 109338.

[41]

Jia, T.; Zhang, J.; Zhang, G.; Liu, C.; Tang, H.; Zhang, K.; Huang, F. Rationally regulating the terminal unit and copolymerization spacer of polymerized small-molecule acceptors for all-polymer solar cells with high open-circuit voltage over 1.10 V. J. Mater. Chem. A 2022, 10, 15932-15940.

[42]

Zhang, T.; Xu, Y.; Yao, H.; Zhang, J.; Bi, P.; Chen, Z.; Wang, J.; Cui, Y.; Ma, L.; Xian, K.; Li, Z.; Hao, X.; Wei, Z.; Hou, J. Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency. Energy Environ. Sci. 2023, 16, 1581-1589.

[43]

Jia, J.; Huang, Q.; Jia, T.; Zhang, K.; Zhang, J.; Miao, J.; Huang, F.; Yang, C. Fine-Tuning Batch Factors of Polymer Acceptors Enables a Binary All-Polymer Solar Cell with High Efficiency of 16.11%. Adv. Energy Mater. 2022, 12, 2103193.

[44]

Tian, H.; Luo, Y.; Chen, Z.; Xu, T.; Ma, R.; Wu, J.; Li, G.; Yang, C.; Luo, Z. Improving Molecular Arrangement and Alleviating Nonradiative Energy Loss Using a Chlorinated Pyrido[3,4-b] Quinoxaline-Core-Based Acceptor for High-Performance Organic Solar Cells. Adv. Energy Mater. 2025, 15, 2404537.

[45]

Ma, R.; Jiang, X.; Dela Peña, T. A.; Gao, W.; Wu, J.; Li, M.; Roth, S. V.; Müller-Buschbaum, P.; Li, G. Insulator Polymer Matrix Construction on All-Small-Molecule Photoactive Blend Towards Extrapolated 15000 Hour T80 Stable Devices. Adv. Mater. 2024, 36, 2405005.

[46]

Jung, S.; Yang, U. J.; Oh, J.; Jeong, S.; Cho, Y.; Lee, G. H.; Choi, M. K.; Yang, C. Transfer Printing of Photoactive Layer Enabling Efficient, Wearable, and Dual-Function Organic Solar Cell Modules for a Wireless Healthcare Monitoring System. Adv. Funct. Mater. 2024, 34, 2406200.

[47]

Jiang, X.; Gillett, A. J.; Zheng, T.; Song, X.; Heger, J. E.; Sun, K.; Spanier, L. V.; Guo, R.; Liang, S.; Bernstorff, S.; Müller-Buschbaum, P. Operando study of the influence of small molecule acceptors on the morphology induced device degradation of organic solar cells with different degrees of π-π stacking. Energy Environ. Sci. 2023, 16, 5970-5981.

[48]

Rivnay, J.; Mannsfeld, S. C. B.; Miller, C. E.; Salleo, A.; Toney, M. F. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale. Chem. Rev. 2012, 112, 5488-5519.

[49]

Khasbaatar, A.; Damron, A. M.; Fernando, P. S.; Williams, J. S.; Zhu, C.; Gann, E. H.; Lee, J.-H.; Birge, A.; Kim, B.; Sabury, S.; Lee, M. L.; Reynolds, J. R.; Diao, Y. Lyotropic Liquid Crystal Mediated Assembly of Donor Polymers Enhances Efficiency and Stability of Blade-Coated Organic Solar Cells. Adv. Mater. 2025, 37, 2414632.

[50]

Peng, Z.; Ye, L.; Ade, H. Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: from novices to experts and amorphous to perfect crystals. Mater. Horiz. 2022, 9, 577-606.

[51]

Dela Peña, T. A.; Ma, R.; Xing, Z.; Wei, Q.; Khan, J. I.; Young, R. M.; Hai, Y.; Garcia, S. A.; Zou, X.; Jin, Z.; Ng, F. L.; Yeung, K. L.; Swearer, D. F.; Wasielewski, M. R.; Wang, J.; Cha, H.; Yan, H.; Wong, K. S.; Li, G.; Li, M.; Wu, J. Interface property-functionality interplay suppresses bimolecular recombination facilitating above 18% efficiency organic solar cells embracing simplistic fabrication. Energy Environ. Sci. 2023, 16, 3416-3429.

[52]

Firdaus, Y.; Maffei, L. P.; Cruciani, F.; Müller, M. A.; Liu, S.; Lopatin, S.; Wehbe, N.; Ndjawa, G. O. N.; Amassian, A.; Laquai, F.; Beaujuge, P. M. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells. Adv. Energy Mater. 2017, 7, 1700834.

RIGHTS & PERMISSIONS

2025 The Authors. Chinese Journal of Chemistry published by SIOC, CAS, Shanghai and Wiley-VCH GmbH

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/