Silylative Kinetic Resolution of Acyclic Secondary Benzylic Alcohols Catalyzed by Chiral Guanidine Having Axial Chirality Containing a Methoxy Group

Yuki Homma , Takahisa Ikeue , Kenya Nakata

Chinese Journal of Chemistry ›› 2025, Vol. 43 ›› Issue (13) : 1553 -1559.

PDF
Chinese Journal of Chemistry ›› 2025, Vol. 43 ›› Issue (13) : 1553 -1559. DOI: 10.1002/cjoc.70025
Concise Report

Silylative Kinetic Resolution of Acyclic Secondary Benzylic Alcohols Catalyzed by Chiral Guanidine Having Axial Chirality Containing a Methoxy Group

Author information +
History +
PDF

Abstract

New chiral guanidine catalysts having axial chirality containing a methoxy group were synthesized. Subsequently, their catalytic ability was examined by applying the silylative kinetic resolution of racemic alcohols using chlorosilanes. Based on an X-ray crystallographic analysis of the catalysts, the functional role of the methoxy group was predicted, and the plausible reaction pathways and a transition state were described. It was also revealed that the existence of hydrogen bonding between the methoxy group on the catalyst and hydrogen atom at C-1 position of the substrates was of great importance for attaining high selectivity and reactivity. The proposed method is applicable to various acyclic aryl, heteroaryl, and normal-alkyl alcohols exhibiting medium to high s-values (s = 15–96, 15 examples).

Keywords

Asymmetric catalysis / Guanidine / Kinetic resolution / Organocatalysis / Silylation

Cite this article

Download citation ▾
Yuki Homma, Takahisa Ikeue, Kenya Nakata. Silylative Kinetic Resolution of Acyclic Secondary Benzylic Alcohols Catalyzed by Chiral Guanidine Having Axial Chirality Containing a Methoxy Group. Chinese Journal of Chemistry, 2025, 43(13): 1553-1559 DOI:10.1002/cjoc.70025

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

For reviews, see: (a) Rendler, S.; Oestreich, M. Kinetic Resolution and Desymmetrization by Stereoselective Silylation of Alcohols. Angew. Chem. Int. Ed. 2008, 47, 248-250;(b) Weickgenannt, A.; Mewald, M.; Oestreich, M. Asymmetric Si–O coupling of alcohols. Org. Biomol. Chem. 2010, 8, 1497–1504; (c) Xu, L.-W.; Chen, Y.; Lu, Y. Catalytic Si-lylations of Alcohols: Turning Simple Protecting-Group Strategies into Powerful Enantioselective Synthetic Methods. Angew. Chem. Int. Ed. 2015, 54, 9456–9466; (d) Seliger, J.; Oestreich, M. Making the Silyla-tion of Alcohols Chiral: Asymmetric Protection of Hydroxy Groups. Chem. Eur. J. 2019, 25, 9358–9365.

[2]

Hoveyda, A. H.; Snapper, M. L.Enantioselective Synthesis of Silyl Ethers Through Catalytic Si-O Bond Formation. In Organosilicon Chemistry: Novel Approaches and Reactions, Eds.: Hiyama T.; Oestreich M., Wiely-VCH, 2020, pp. 459-493.

[3]

Wuts, P. G. M. Green's Protective Groups in Organic Synthesis, 5th ed., Wiely & Sons, New York, 2014 and references cited therein.

[4]

Isobe, T.; Fukuda, K.; Araki, Y.; Ishikawa, T. Modified guanidines as chiral superbases: the first example of asymmetric silylation of secondary alcohols. Chem. Commun. 2001, 243-244.

[5]

(a) Rendler, S.; Auer, G.; Oestreich, M. Kinetic Resolution of Chiral Secondary Alcohols by Dehydrogenative Coupling with Recyclable Silicon-Stereogenic Silanes. Angew. Chem. Int. Ed. 2005, 44, 7620-7624; (b) Klare, H. F. T.; Oestreich, M. Chiral Recognition with Sili-con-Stereogenic Silanes: Remarkable Selectivity Factors in the Kinetic Resolution of Donor-Functionalized Alcohols. Angew. Chem. Int. Ed. 2007, 46, 9335–9338; (c) Weickgenannt, A.; Mewald, M.; Muesmann, T. W. T.; Oestreich, M. Catalytic Asymmetric Si–O Coupling of Simple Achiral Silanes and Chiral Donor-Functionalized Alcohols. Angew. Chem. Int. Ed. 2010, 49, 2223–2226; (d) Dong, X.; Weickgenannt, A.; Oestreich, M. Broad-spectrum kinetic resolution of alcohols enabled by Cu–H-catalysed dehydrogenative coupling with hydrosilanes. Nat. Commun. 2017, 8, 15547; (e) Dong, X.; Kita, Y.; Oestreich, M. Kinetic Resolution of α-Hydroxy-Substituted Oxime Ethers by Enantioselec-tive Cu–H-Catalyzed Si–O Coupling. Angew. Chem. Int. Ed. 2018, 57, 10728–10731; (f) Papadopulu, Z.; Kazeroonian, N.; Irran, E.; Oes-treich, M. One out of Four: Kinetic Resolution of Stereoisomeric Mixtures of Secondary Alcohols with a Quaternary Carbon Atom in the β‐Position by Cu−H-Catalyzed Enantioselective Silylation. ACS Org. Inorg. Au 2022, 2, 164−168.

[6]

(a) Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L. Enantioselective silyl protection of alcohols catalysed by an amino-acid-based small molecule. Nature 2006, 443, 67-70; (b) Zhao, Y.; Mitra, A. W.; Hoveyda, A. H.; Snapper, M. L. Kinetic Resolution of 1,2-Diols through Highly Site- and Enantioselective Catalytic Silylation. Angew. Chem. Int. Ed. 2007, 46, 8471–8474; (c) Rodrigo, J. M.; Zhao, Y.; Hoveyda, A. H.; Snapper, M. L. Regiodivergent Reactions through Catalytic Enantioselective Silylation of Chiral Diols. Synthesis of Sapinofuranone A. Org. Lett. 2011, 13, 3778–3781.

[7]

(a) You, Z.; Hoveyda, A. H.; Snapper, M. L. Catalytic Enantioselective Silylation of Acyclic and Cyclic Triols: Application to Total Syntheses of Cleroindicins D, F, and C. Angew. Chem. Int. Ed. 2009, 48, 547-550; (b) Manville, N.; Alite, H.; Haeffner, F.; Hoveyda, A. H.; Snapper, M. L. Enantioselective silyl protection of alcohols promoted by a combina-tion of chiral and achiral Lewis basic catalysts. Nat. Chem. 2013, 5, 768–774.

[8]

(a) Sheppard, C. I.; Taylor, J. L.; Wiskur, S. L. Silylation-Based Kinetic Resolution of Monofunctional Secondary Alcohols. Org. Lett. 2011, 13, 3794-3797; (b) Clark, R. W.; Deaton, T. M.; Zhang, Y.; Moore, M. I.; Wiskur, S. L. Silylation-Based Kinetic Resolution of α‐Hydroxy Lac-tones and Lactams. Org. Lett. 2013, 15, 6132–6135; (c) Wang, L.; Akhani, R. K.; Wiskur, S. L. Diastereoselective and Enantioselective Silylation of 2-Arylcyclohexanols. Org. Lett. 2015, 17, 2408–2411.

[9]

(a) Yan, H.; Jang, H. B.; Lee, J.-W.; Kim, H. K.; Lee, S. W.; Yang, J. W.; Song, C. E. A Chiral-Anion Generator: Application to Catalytic Desilylative Kinetic Resolution of Silyl-Protected Secondary Alcohols. Angew. Chem. Int. Ed. 2010, 49, 8915-8917; (b) Park, S. Y.; Lee, J.-W.; Song, C. E. Parts-per-million level loading organocatalysed enanti-oselective silylation of alcohols. Nat. Commun. 2015, 6, 7512.

[10]

(a) Nakata, K.; Shiina, I. (R)-(+)-N-Methylbenzoguanidine ((R)-NMBG) catalyzed kinetic resolution of racemic secondary benzylic alcohols with free carboxylic acids by asymmetric esterification. Org. Biomol. Chem. 2011, 9, 7092-7096; (b) Yamada, A.; Nakata, K, Shiina, I. Acyl-ative kinetic resolution of racemic aromatic b-hydroxy esters cata-lyzed by chiral nucleophilic N-(1-arylethyl)benzoguanidines. Tetrahe-dron: Asymmetry 2017, 28, 516–521.

[11]

(a) Yoshimatsu, S.; Yamada, A.; Nakata, K. Silylative Kinetic Resolution of Racemic 1-Indanol Derivatives Catalyzed by Chiral Guanidine. J. Org. Chem. 2018, 83, 452−458; (b) Yoshimatsu, S.; Nakata, K. Silyla-tive Kinetic Resolution of Racemic 2,2-Dialkyl 5- and 6-Membered Cyclic Benzylic Alcohol Derivatives Catalyzed by Chiral Guanidine, (R)-N-Methylbenzoguanidine. Adv. Synth. Catal. 2019, 361, 4679–4684; (c) Suzuki, T.; Iwakura, M.; Nakata, K. Highly Efficient Silylative Kinetic Resolution of Racemic trans-2-Alkyl-1-indanols Catalyzed by Chiral Guanidine. ChemistrySelect 2021, 6, 11261–11264; (d) Miya-zaki, K.; Nakata, K. Two-Step Kinetic Resolution of Racemic Second-ary Benzylic Alcohols Using the Combination of Enantioselective Si-lylation and Acylation: One-Pot Procedure Catalyzed by Chiral Guani-dine. J. Org. Chem. 2022, 87, 10509–10515; (e) Iwakura, M.; Ikeue, T.; Nakata, K. Design and Synthesis of Axial-Chirality-Containing Guani-dine Catalysts. ChemistrySelect 2022, 7, e202202511; (f) Miyazaki, K.; Nakata, K. Synlett 2024, 35, 1591–1595.

[12]

Kagan, H. B.; Fiaud, J. C.Kinetic Resolution. In Topics in Stereochemistry, Vol. 18, Eds.: E. L. Eliel; S. H. Wilen, Wiely, New York, 1988, pp. 249-330.

[13]

Ishida, M.; Adachi, R.; Kobayashi, K.; Yamamoto, Y.; Kawahara, C.; Yamada, T.; Aoyama, H.; Kanomata, K.; Akai, S.; Lam, P. Y. S.; Sajiki, H.; Ikawa, T. First atroposelective Chan-Lam coupling for the synthesis of C-N linked biaryls. Chem. Commun. 2024, 60, 678-681.

[14]

(a) Patschinski, P.; Zhang, C.; Zipse, H. The Lewis Base-Catalyzed Silylation of Alcohols - A Mechanistic Analysis. J. Org. Chem. 2014, 79, 8348−8357; (b) Patschinski, P.; Zipse, H. Leaving Group Effects on the Selectivity of the Silylation of Alcohols: The Reactivity – Selectivity Principle Revisited. Org. Lett. 2015, 17, 3318−3321; (c) Marin-Luna, M.; lloth, B. P.; Zott, F.; Zipse, H. Size-dependent rate acceleration in the silylation of secondary alcohols: the bigger the faster. Chem. Sci. 2018, 9, 6509–6515.

[15]

Marin-Luna, M.; Patschinski, P.; Zipse, H. Substituent Effects in the Silylation of Secondary Alcohols: A Mechanistic Study. Chem. Eur. J. 2018, 24, 15052-15058.

[16]

Hashimoto, H.; Ueda, Y.; Takasu, K.; Kawabata, T. Catalytic Substrate- Selective Silylation of Primary Alcohols via Remote Functional-Group Discrimination. Angew. Chem. Int. Ed. 2022, 61, e202114118.

[17]

(a) Akhani, R. K.; Moore, M. I.; Pribyl, J. G.; Wiskur, S. L. Linear Free-Energy Relationship and Rate Study on a Silylation-Based Kinetic Resolution: Mechanistic Insights. J. Org. Chem. 2014, 79, 2384−2396; (b) Wang, L.; Zhang, T.; Redden, B. K.; Sheppard, C. I.; Clark, R. W.; Smith, M. D.; Wiskur, S. L. Understanding Internal Chirality Induction of Triarylsilyl Ethers Formed from Enantiopure Alcohols. J. Org. Chem. 2016, 81, 8187−8193; (c) Redden, B. K.; Clark, R. W.; Gong, Z.; Rahman, M. M.; Peryshkov, D. V.; Wiskur, S. L. Mechanistic investiga-tions of alcohol silylation with isothiourea catalysts. Org. Biomol. Chem. 2021, 19, 10818–10188; (d) Gong, Z.; Smith, A.; Farah, A. O.; Dickerson, S. D.; González-Montiel, G. A.; Laddusaw, J. M.; Cheong, P. H.-Y.; Wiskur, S. L. Investigating Substituent Interactions with Cati-onic Catalysts. J. Org. Chem. 2023, 88, 16898−16905.

[18]

Hu, T.; Zhang, Y.; Wang, W.; Li, Q.; Huang, L.; Gao, J.; Kuang, Y.; Zhao, C.; Zhou, S.; Gao, L.; Su, Z.; Song, Z. Lewis Base-Catalyzed Dynamic Kinetic Asymmetric Transformation of Racemic Chlorosilanes en Route to Si-Stereogenic Silylethers J. Am. Chem. Soc. 2024, 146, 23092−23102.

RIGHTS & PERMISSIONS

2025 The Authors. Chinese Journal of Chemistry published by SIOC, CAS, Shanghai and Wiley-VCH GmbH

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/